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Abstract

In this study, we propose a Bayesian model
that can jointly estimate the number of senses
of words and their changes through time. The
model combines a dynamic topic model on
Gaussian Markov random fields (Frermann and
Lapata, 2016) with a logistic stick-breaking
process that realizes the Dirichlet process. In
the experiments, we evaluated the proposed
model in terms of interpretability, accuracy in
estimating the number of senses, and track-
ing their changes using both artificial data and
real data. We quantitatively verified that the
model behaves as expected through evaluation
using artificial data. Using the CCOHA cor-
pus, we showed that our model outperforms the
baseline model and investigated the semantic
changes of several well-known target words.

1 Introduction

Words exhibit a range of senses depending on the
context in which they are used. These senses can
also change over time (Blank and Koch, 1999;
Aitchison, 2001). For example, the word cute ap-
peared in the early 18th century, which originally
meant clever or keen-witted. By the late 19th cen-
tury it signified cunning, and today, cute means
attractive, pretty, or sweet (Stevenson, 2010; Fr-
ermann and Lapata, 2016). Automatically captur-
ing these semantic changes is an academic contri-
bution to the fields of lexicology and linguistics
(Voyles, 1973; Williams, 1976).

In recent years, many methods have been pro-
posed for the detection of semantic changes us-
ing distributional methods (Kutuzov et al., 2018).
They include word embedding-based methods with
alignment of word embedding spaces at different
times (Kim et al., 2014; Kulkarni et al., 2015;
Hamilton et al., 2016b), without alignment (Yao
et al., 2018; Dubossarsky et al., 2019; Aida et al.,
2021), and using probabilistic frameworks (Bam-
ler and Mandt, 2017; Rudolph and Blei, 2018).

Word embedding-based methods describe semantic
change by changes of surrounding words in se-
mantic space. However, the learned embeddings
themselves cannot account for the existence of each
sense and its relative importance. In contrast, sev-
eral methods have addressed these issues using a
topic model architecture (Frermann and Lapata,
2016; Emms and Jayapal, 2016). These proba-
bilistic models estimate the latent senses explicitly
and consider their changes, unlike word embed-
ding models. However, these models have a criti-
cal problem in that the number of senses is given
and fixed, even though it will vary for each word,
which harms the modeling of semantic change. In
addition, the number of senses is rarely apparent
beforehand, thus it is difficult to set it a priori. A re-
cent method of clustering contextualized word em-
beddings obtained from BERT can similarly track
sense changes (Giulianelli et al., 2020), but it does
not take time evolution into account, and cannot es-
timate the number of senses and semantic changes
jointly.

Therefore, to address these limitations, we pro-
pose a model that can automatically estimate the
number of senses and simultaneously capture se-
mantic changes by extending the model proposed
by Frermann and Lapata (2016). To this end, we
combined a dynamic topic model on Gaussian
Markov random fields (GMRF) with a logistic
stick-breaking process (Ren et al., 2011) to real-
ize a Dirichlet process in latent Euclidean space.1

Here, our work can answer the question of how
many senses the word has in the context of mod-
eling semantic change, which can be applicable
to lexicography. In our experiments, we verified
the performance of the proposed model in terms
of the estimation accuracy of the number of senses
and sense change on artificial data. Then, we eval-
uated the model performance using real data and

1Source code is available at https://github.com/
seiichiinoue/iscan .
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Year Example Snippet

1853 The driver made room for the trunk on the top of the coach. {driver, make, room, trunk}
1900 The chair passed the coach, the horses proceeding at a walk. {chair, pass, horse, proceed, walk}
1949 Tell him if I start coaching, it’ll be as a head coach at a top school. {tell, start, coach, head, top, school}
2003 Football coach and other top school officials have been interviewed. {football, top, school, official, interview}

Figure 1: Example snippets for input to SCAN for the target word coach. The snippets were obtained from the
preprocessing step described in Section 6.1.

analyzed the semantic changes of several words.
The contributions of this study can be summarized
as follows:

• We combine a dynamic topic model on GMRF
with a Dirichlet process to propose a model
that can jointly estimate the number of senses
and semantic change of words.

• We quantitatively and qualitatively show that
the proposed model can correctly estimate the
number of word senses and semantic changes
and outperforms baseline models.

2 Background

2.1 Dynamic Bayesian model of sense change
Frermann and Lapata (2016) proposed a dynamic
Bayesian model that captures the diachronic word
Sense ChANge (SCAN). In the SCAN framework,
one model is constructed for each target word w.
The input is a set of snippets, i.e. short documents,
consisting of context words cd = {cd,1, . . . cd,I}
with length I of a sentence containing the target
word w, and time label of the year in which each
sentence appeared. An example of snippets is
shown in Figure 1.

In SCAN, the set of snippets at time t ∈
{1 . . . T} is modeled by unigram mixtures at each
time point:

• K-dimensional multinomial distribution ϕt
(sense distribution) over the senses.

• V -dimensional multinomial distribution ψt,k
(sense–word distribution) over the words for
each word sense k.

Also, a Gaussian distribution is assumed for each
prior distribution. ϕ is obtained by transforming a
sampled vector as follows:

1. Draw aK-dimensional vector α from the mul-
tivariate Gaussian distribution.

2. Project this vector to a K − 1-dimensional
simplex, using the softmax transformation
ϕk = exp(αk)/

∑K
k=1 exp(αk).

ψ can be obtained in a similar way. Note that K is
assumed to be given (a parameter to be set a priori),

Figure 2: A linear chain iGMRF.

which is a severe problem in practice. Then, they
define the first-order intrinsic Gaussian Markov
random field (iGMRF) (Rue and Held, 2005) for
the prior distribution so that the sense distribution ϕ
and sense–word distributionψ change through time.
The iGMRF is a prior distribution such that the
value at any location is similar to that of neighbors
(graphically shown in Figure 2).2 For a real vector
x = (x1, x2, . . . , xT ) and Gaussian distribution
N (µ, σ2), the iGMRF is defined as follows:

xt |x−t, κ ∼ N
(
1

2
(xt−1 + xt+1),

1

κ

)
, (1)

where x−t is a set of x except for xt and κ is a pre-
cision parameter. The Gaussian distribution, which
is a prior distribution of the sense distribution and
the sense–word distribution, has precision param-
eters κϕ and κψ to control the degree of change,
respectively. In particular, the precision parameter
of the sense distribution, κϕ, should be estimated
from the data because the “speed” of sense change
varies depending on the target word w.

Based on the above definition, the genera-
tive model of SCAN is described as follows,
where Ga(a, b) denotes the gamma distribution and
Mult(θ) denotes the multinomial distribution.

1. Draw κϕ ∼ Ga(a, b)

2. For time interval t = 1 . . . T

(a) Draw a sense distribution
i. αt |α−t, κϕ

∼ N
(
1
2(αt−1 + αt+1), κ

−1
ϕ

)
ii. ϕt = Softmax(αt)

(b) For sense k = 1 . . .K

i. Draw a sense–word distribution
2iGMRF can be viewed as a special case of a Gaussian

process in which the kernel is restricted to adjacent times.



A. βt,k |β−t, κψ

∼ N
(
1
2(βt−1,k + βt+1,k), κ

−1
ψ

)
B. ψt,k = Softmax(βt,k)

(c) For snippet d = 1 . . . D

i. Draw a sense zd ∼ Mult(ϕt)

ii. For context position i = 1 . . . I

A. Draw a word cd,i ∼ Mult(ψt,zd)

2.2 Logistic stick-breaking process
The Dirichlet process (Ferguson, 1973; Antoniak,
1974) is an infinite-dimensional generalization of
Dirichlet distribution and generates an infinite-
dimensional multinomial distribution. The stick-
breaking process (SBP) (Sethuraman, 1994) is an
example of its realization. In the SBP representa-
tion, a probability distribution G that follows the
Dirichlet process DP(α,G0) is generated as fol-
lows:

πk = vk

k−1∏
j=1

(1− vj), vk ∼ Be(1, α) (2)

G =

∞∑
k=1

πkδ(θk), θk ∼ G0, (3)

where Be(1, α) denotes a beta distribution. First,
the probability for the k-th category πk is deter-
mined by recursively breaking a stick of length
one, which is the sum of the probabilities. Then,
the delta function δ(θk) is set at a location θk sam-
pled from the base measure G0.

Ren et al. (2011) proposed the logistic stick-
breaking process (LSBP), which realizes a Dirich-
let process in the same way as the original SBP
by transforming a random variable with logistic
function σ(x) = 1/(1 + e−x), where each class
is associated with a certain covariate3 x ∈ R. Let
xk be a random variable that follows a Gaussian
distribution for each category; the LSBP generates
the probability distribution Gx as follows:

π(xk) = σ(xk)

k−1∏
j=1

(1− σ(xj)) , (4)

Gx =

∞∑
k=1

π(xk)δ(θk). (5)

3 Proposed Method

3.1 Infinite SCAN
We propose an infinite model of diachronic seman-
tic change: Infinite SCAN that extends the archi-

3In the case of SCAN, the random variables that follow a
Gaussian distribution are associated with each sense and each
word in the sense.

Figure 3: Graphical model of Infinite SCAN for three
time steps {t−1, t, t+1}. Observations are shown as
gray nodes, latent variables as clear nodes, and constants
as dashed nodes. Adapted from Frermann and Lapata
(2016) with the number of senses being infinite.

tecture of SCAN (introduced in Section 2.1) using
LSBP (introduced in Section 2.2) to automatically
estimate the number of word senses for each target
word. The graphical model of Infinite SCAN is
shown in Figure 3. The proposed model extends
iGMRF over the time direction in the semantic
distribution with LSBP that realizes a Dirichlet pro-
cess. This makes the sense distribution practically
infinite-dimensional, and the number of senses, Sw,
appropriate for the target word w can be automati-
cally estimated from the corpus. Here, we note that
our idea is similar to the model linking Gaussian
process and Dirichlet process for spatial modeling
(Duan et al., 2007) and the method using Gaussian
process and Pitman-Yor process for image segmen-
tation (Sudderth and Jordan, 2008).

In Infinite SCAN, as in SCAN, one model is
constructed for each target word w. The input is
a set of snippets consisting of context words cd =
{cd,1, . . . cd,I} of a sentence containing the target
word w, and time label of the year in which each
sentence appeared. The set of snippets appearing
at time t is represented by the sense distribution ϕt
and sense–word distributions ψt,k, each following
a first order iGMRF:

αt |α−t, κϕ ∼ N
(
1

2
(αt−1 + αt+1), κ

−1
ϕ

)
. (6)

Here, we modify the generative process of the sense
distribution ϕt using LSBP as follows, so that the
number of senses Sw, which depends on the target
word w, can be automatically estimated from the
corpus:

ϕt,k = σ(αt,k)
k−1∏
j=1

(1− σ(αt,j)) (7)

(k = 1, . . . ,K),



Figure 4: LSBP transformation of random variables
following a Gaussian distribution in a sense distribution.

where K is the maximum number of senses con-
sidered. Here, LSBP can generate the infinite-
dimensional multinomial distribution. However, in
practice, if the dimension of the word sense is suffi-
cient to represent the data, using high-dimensional
distributions is not necessary. Thus, in this study,
we set the maximum number of senses K =8 by
referring to the previous study (Frermann and La-
pata, 2016).4 Figure 4 illustrates the LSBP trans-
formation of the sense distribution. The horizon-
tal axis denotes time, and the vertical axis de-
notes the scale of the random variable following
a Gaussian distribution. The probability of each
word sense {ϕt,1, . . . , ϕt,K} is obtained by LSBP
transformation over the set of random variables
{αt,1, . . . , αt,K}.

In SCAN, the precision parameter κϕ of the
sense distribution is shared across all senses. This
is because the sense distribution ϕt at time t is con-
structed by a softmax transformation, which nor-
malizes the distribution by considering all of the
senses, so that the variance of all senses is within
a certain scale. By contrast, in Infinite SCAN, the
sense distribution ϕt at time t is constructed by
LSBP transformation. In the LSBP transformation,
sense k is transformed by a sigmoid function inde-
pendently of the other senses, such that the scale
of the Gaussian random variable corresponding to
each sense will differ. Therefore, in the proposed
model, κϕ should not be shared across all senses
k ∈ {1 . . .K} unlike SCAN. Instead, we assume
and estimate a different precision κ

(k)
ϕ for each

Gaussian random variable corresponding to sense
αk.

4Preliminary experiments indicated that there are very few
words that have more than eight senses.

3.2 Markov Chain Monte Carlo (MCMC)
estimation

To estimate the parameters of Infinite SCAN, we
used a blocked Gibbs sampler. The parameters to
be estimated in Infinite SCAN are (a) the sense as-
signment z for each snippet, (b) the parameters de-
fined by iGMRF for the semantic distribution α (un-
normalized ϕ), (c) sense–word distributions β (un-
normalized ψ), and (d) the precision parameter κϕ
of the sense distribution following the gamma dis-
tribution. In the model estimation, each parameter
is sampled from its posterior distribution given the
other parameters. The pseudo-code of the MCMC
algorithm is shown in Appendix A. Each parameter
basically follows Frermann and Lapata (2016), but
we changed some parameters; see Section 4 for
details.

Sense assignments of snippet The sense assign-
ments of the d-th snippet, zd, are sampled from the
following posterior distribution under the current
model parameters ϕ and ψ:

p(zd |w, t, ϕ, ψ) ∝ p(zd | t)p(w | t, zd)
= ϕ(t)zd

∏
w∈w

ψ(t,zd)
w . (8)

Sense distribution Because the sense distribu-
tion follows a Gaussian distribution, it is not conju-
gate to the multinomial distribution. Thus, straight-
forward parameter sampling, such as Dirichlet-
multinomial, does not apply. Linderman et al.
(2015) proposed a Gibbs sampling for parameters
of a multinomial distribution, modeled with a Gaus-
sian prior and the LSBP transformation, by using
a Pólya-gamma auxiliary variable (Polson et al.,
2013). This approach is used in this study. The
posterior distribution of α is computed as follows:

p(αt | z,α−t, ω)

∝ N
(
ω−1f(c) |αt

)
N
(
αt |α−t, κ

−1
ϕ

)
∝ N

(
αt | µ̃, κ̃−1

ϕ

)
. (9)

Here, ω is an auxiliary variable that is sam-
pled from Pólya-gamma distribution ω | z, αt ∼
PG(N(ck), αt), where ck denotes the number of
snippet belonging to k-th sense and N(ck) =∑

k ck −
∑

j<k cj . Also, the mean and preci-
sion of the posterior distribution are computed as
µ̃ = (f(ck)+µkκϕ)/κ̃ϕ and κ̃ϕ = ωk+κϕ, where
f(ck) = ck −N(ck)/2.



Sense–word distribution The sense–word dis-
tribution, as the sense distribution, follows Gaus-
sian distribution; thus, cannot be applied to such
Dirichlet-multinomials. Mimno et al. (2008) pro-
posed a Gibbs sampling for parameters of multi-
nomial distribution modeled with a Gaussian prior
and softmax transformation; we estimate the pa-
rameters using this approach. Let the number of
snippets be D and the snippet length be Nd; the
posterior distribution of β is as follows:

p(βt | z,β−t, κ
−1
ψ ) ∝ (10)

D∏
d=1

(
Nd∏
n=1

exp(β
(t,zd)
wn )∑V

v=1 exp(β
(t,zd)
v )

)
N (βt |β−t, κ

−1
ψ ).

Precision parameter The precision parameter of
the Gaussian distribution given its mean follows
a gamma posterior distribution. With the shape
parameter of the gamma distribution as a and the
scale parameter as b, the posterior distribution of
κϕ is as follows:

p(κ
(k)
ϕ |αk, a, b)

= Ga

(
a+

T

2
, b+

1

2

T∑
t=1

(αt,k − ᾱk)

)
(11)

where ᾱk = 1/T
∑

t αt,k is the mean of α corre-
sponding to sense k.

4 Experimental Settings

In the following experiments, we split the data (i.e.
set of snippets) into period of time slice 1 to T .
The time interval for year-labeled data was set to
∆t=20 years. We used vocabulary with frequency
larger than 10.

As model settings, we set the maximum num-
ber of senses to K=8, the initial sense precision
parameter as κ(k)ϕ = 4 for each sense k, and the
gamma parameters as a=7 and b=3. We set a rel-
atively large value for the word precision parameter,
with κψ =100.0, following Perrone et al. (2019).
This is because we want to capture the sense change
of the target word as much as possible in terms of a
“shift of the sense distribution” rather than a “shift
of the sense–word distribution.” 5 Finally, we ran

5In the former case, sense change is explained only by
the shift of the sense–word distribution, resulting in incorrect
detection of sense change, making it difficult to estimate the
number of senses.

SCAN Infinite SCAN#Senses K=5 K=8

1 1.523 1.997 0.468
2 0.335 0.578 0.039
3 0.216 0.735 0.030
4 0.212 0.150 0.061
5 0.004 0.017 0.004

Table 1: Kullback-Leibler divergence (lower is better)
between actual sense distribution and sense distribution
estimated by each model for the artificial data.

the Gibbs sampler for 2,000 iterations6 and resam-
pled κ(k)ϕ for each sense k after every 50 iterations,
starting from iteration 150.

5 Experiments using Artificial Data

Prior to the experiments using real data, we eval-
uated the proposed model on artificial data to val-
idate the model for correctly estimating arbitrary
changes and the number of senses.

5.1 Dataset
When generating artificial data, we first sampled
the curve of sense change from a Gaussian process
and then transformed it by the LSBP at each time
point to obtain the multinomial sense distribution,
as shown in Figure 4. Next, we used a Zipfian
distribution to generate the sense–word distribution,
i.e.,

f(k | s,N) =
1/ks∑N
n=1 1/n

s
(12)

to reproduce Zipf’s law of texts (Zipf, 1945) ob-
served in real data. Finally, we randomly generated
a set of artificial snippets using these sense dis-
tributions and sense–word distributions. In this
experiment, we fixed the number of time points
in the artificial data at T = 10, the original vo-
cabulary size7 at V =5,000, the snippet length at
I = 10, and changed the number of word senses8

from Sw =1 to 5. The following example shows
the generated snippets with sense k=0 and 3.

k=0: a e y y ag cy et gw xa ahy

k=3: dkj dkj dkj dkp dlq dms dmy dpy eaj esv

Here, words are actually expressed as integers from
0 to 5,000, but we use alphabet (base-26 numbers)
for interpretability in this example.

6The computational time is proportional to sample size,
and it took 5 minutes to converge on data with 10,000 samples.

7The mode vocabulary size of the corpus used in the ex-
periments was approximately 5,000.

8Most polysemous words have five or less senses (Biemann
and Nygaard, 2010).



Figure 5: Actual distribution and estimated distribution
for the artificial data for the number of senses Sw =5.
Senses of the estimated distribution are sorted according
to the actual distribution for interpretability.

5.2 Results

Table 1 shows a comparison of the estimation re-
sults of SCAN and Infinite SCAN using artificial
data with the number of senses ranging from Sw=1
to 5. To quantitatively measure whether the sense
distribution is correctly represented, we used the
Kullback-Leibler divergence on the space RT×K
between the estimated and actual sense distribu-
tions as an indicator. The results show that Infinite
SCAN outperforms SCAN that does not automati-
cally estimate the number of word senses.

Figure 5 shows an example of the actual distribu-
tion and the estimation results of Infinite SCAN for
the artificial data with the number of word senses
Sw=5. Here, the sense of the most dominant word
in the estimated sense-word distribution for each
sense k is shown in the legend for simplicity.

The figure shows that the proposed model cap-
tures the sense change almost precisely and esti-
mates the true number of senses correctly.

6 Experiments using Real Data

In the experiments on real data, we firstly evaluated
interpretability of the model output in the same
manner as topic models (Section 6.3). We further
evaluated the quality of the estimation results of
the proposed model in terms of the estimation of
the number of senses (Section 6.4) and the sense
change (Section 6.5).

6.1 Dataset

We used the Clean Corpus of Historical Ameri-
can English (CCOHA) (Alatrash et al., 2020), a
large collection of texts from various genres cov-
ering the years 1810–2009. As a preprocessing,
we tokenized, lemmatized, and removed stopwords.
Moreover, we performed part-of-speech tagging
using the Natural Language Toolkit (NLTK) (Bird
et al., 2009) and extracted only nouns, verbs, and

adjectives. After the above preprocessing, we cre-
ated the target word-specific input corpora, i.e.
snippets, for our models. They consisted of a set of
context words cd before and after the point where
the target word w appeared in the corpus, with a
symmetric window width of ±5 words.

For quantitative evaluation (Sections 6.3 and
6.4), out of the 4,193 sense-tagged words (noun
and verbs), we randomly selected 120 words with
five or less senses 9 from OntoNotes (Hovy et al.,
2006). The statistics of the randomly selected
words are shown in Appendix B. For qualitative
evaluation (Section 6.5), we selected the follow-
ing three words: coach (Aida et al., 2021), record
(Hamilton et al., 2016b), and power (Frermann
and Lapata, 2016), based on previous studies. The
statistics of these words are shown in Appendix C.

6.2 Models

We compared the proposed model with the follow-
ing previous methods in addition to SCAN.

HDP-LDA We used a Bayesian nonparametric
version of LDA (Blei et al., 2003) using hierarchi-
cal Dirichlet process (HDP-LDA) (Teh and Jordan,
2010) that can automatically estimate the number
of topics as one of the baseline models. Unlike
the proposed model, HDP-LDA does not model
the temporal evolution of texts. In addition, since
a document is represented by a mixture of topics
rather than one document with one topic, we used
“the set of snippets at time t” instead of “a snippet”
as the input unit to estimate the number of senses
and semantic changes. The number of topics was
initially set to K=8, but estimated adaptively.

BERT + clustering We also compared our model
with BERT (Devlin et al., 2019), a method that uses
contextualized word embeddings.10 In line with
the previous study (Giulianelli et al., 2020), we
first obtained contextualized word embeddings for
every sentence containing the target word. Then,
we estimated the number of senses and semantic
changes by clustering the contextualized word em-
beddings across time periods. For the clustering
methods, we used both k-means (Lloyd, 1982) and
DBSCAN (Ester et al., 1996).

9Most polysemous words have five or less senses (Biemann
and Nygaard, 2010) as noted in Section 5.

10We used base-uncased version of the pre-trained model
available at https://github.com/huggingface/
transformers.

https://github.com/huggingface/transformers
https://github.com/huggingface/transformers


Model Coherence Diversity

HDP-LDA 0.125 0.821

SCAN (K=5) 0.178 0.716
SCAN (K=8) 0.171 0.654
Infinite SCAN 0.181 0.885

Table 2: Sense coherence and diversity (higher is better)
computed with the baseline models and Infinite SCAN
for 120 target words randomly selected from OntoNotes.

6.3 Evaluation of interpretability
Metrics For the evaluation of interpretability of
model output, we use sense coherence and diversity
to compare the baseline models with the proposed
model, following Dieng et al. (2020). Sense coher-
ence C is defined as the average similarity between
two words in representative words of each sense:

C =

K∑
k=1

η

45

10∑
i=1

10∑
j=i+1

f(w
(k)
i , w

(k)
j ), (13)

where w(k)
i is the i-th most probable word in sense

k, and η is the normalization constant of the word
sense. Although Dieng et al. (2020) simply set η=
1/K, in this study, we set η=p(k) using the sense
probability p(k) of each sense k to legitimately
evaluate the sense–word distribution of the sense
of very small probability. f(w,w′) denotes the
similarity of words in the semantic space; we use
the cosine similarity calculated through word2vec11

(Mikolov et al., 2013). We define sense diversity
as the proportion of words with no overlap among
the top 10 words in all senses. Diversity close to
0 indicates redundancy, and diversity close to 1
indicates less overlap.

Results Table 2 shows the scores calculated us-
ing the estimation results of HDP-LDA, SCAN,
and Infinite SCAN12 for the target words. Here,
we note that the initial number of senses is fixed
for both HDP-LDA and SCAN to match the setting
of the proposed model estimating without know-
ing the number of senses. The results show that
Infinite SCAN outperforms the baseline models
on both metrics. An improvement in coherence
means that the semantic consistency of representa-
tive words of the estimated sense–word distribution
is high, indicating a high degree of interpretability
of estimated sense. Regarding the improvement in

11We used the pre-trained model available at https://
code.google.com/archive/p/word2vec/.

12BERT is not a probabilistic generative model and can-
not automatically extract representative words, so it was not
comparable in this experiment.

Model Accuracy Pearson Corr.

HDP-LDA 0.258 0.019
BERT + k-means 0.217 0.026
BERT + DBSCAN 0.125 −0.070

SCAN (K=5) 0.158 0.141
SCAN (K=8) 0.000 0.087
Infinite SCAN 0.358 0.474

Table 3: Prediction results for the number of senses
computed with the baseline models and Infinite SCAN
for 120 target words randomly selected from OntoNotes.

Figure 6: Correlation between actual and expectation of
the number of senses computed with Infinite SCAN for
120 target words randomly selected from OntoNotes.

diversity, semantic overlap of representative words
in the estimated sense–word distribution is smaller,
meaning that the number of senses is estimated at
an appropriate granularity.

6.4 Evaluation of the number of senses

Metrics For evaluating the number of senses, we
calculated the accuracy and Pearson correlation
coefficient (PCC) using the number of senses reg-
istered with OntoNotes as the gold standard. For
SCAN and Infinite SCAN, we calculated the ef-
fective number of senses as an expectation of the
sense distribution as follows:

E(Sw) = exp
(
−
∑K

k=1 ϕk log ϕk

)
, (14)

where ϕk = 1/T
∑T

t=1 ϕt,k is a marginal sense
probability. Here, the term within the exponen-
tial is an entropy of the sense distribution, meaning
that E(Sw) is the perplexity of this distribution. For
example, when ϕ= (0.5, 0.5, · · · , 0), E(Sw) is 2
and even when ϕ=(0.49, 0.01, 0.5, · · · , 0), E(Sw)
becomes also approximately 2. We used this expec-
tation to calculate PCC, and used its floor value for
the accuracy. For HDP-LDA, we directly used the
estimated number of topics as the number of senses.
For BERT + k-means, we determined the number
of senses by selecting the number of clusters that
maximizes the silhouette score (Rousseeuw, 1987),
following Giulianelli et al. (2020). For BERT +

https://code.google.com/archive/p/word2vec/
https://code.google.com/archive/p/word2vec/
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Figure 7: Estimated senses for the target words coach, record, and power. Each bar shows the proportion of each
sense and is labeled with the start year of the respective time interval. Senses are shown as most high NPMI words.

DBSCAN, we used the estimated number of clus-
ters as the number of senses, with hyperparameters
epsilon=5 and min_samples=2.

Results Table 3 shows prediction results of the
number of senses for the baseline models and Infi-
nite SCAN. We can see that Infinite SCAN outper-
forms the other models in terms of accuracy and
PCC between the number of gold and estimated
senses. Since SCAN has no mechanism for auto-
matically estimating the number of senses, both
the accuracy and PCC are quite low. Even though
HDP-LDA and BERT+clustering have an architec-
ture for determining the number of senses, PCC is
quite low and these methods do not capture trends
in the number of senses that differs depending on
a word. Here, compared to k-means, DBSCAN is
worse because it ignores some examples as noise,
which results in sparse clustering and an overes-
timation of the number of senses. In contrast, In-
finite SCAN can estimate the number of senses
more appropriately, because it generates a sense
distribution in the stick-breaking architecture that
automatically estimates the number of senses from
data.

Figure 6 shows that the correlation between the
actual and expectation of the number of senses, in-
dicating that the proposed model can capture the
tendency of the number of senses. Here, we note
that it is obviously difficult to estimate the granu-

larity of manually-annotated meanings, since there
are some gold labels that have not appeared in the
CCOHA corpus we used for estimation.

6.5 Evaluation of sense change
Methodology We qualitatively evaluated the
tracking of sense change by visualizing the sense
distribution for three target words coach, record,
and power estimated using Infinite SCAN and
SCAN. We also show several words with high
Normalized pointwise mutual information (NPMI)
(Bouma, 2009) in the marginalized sense–word dis-
tribution

∑T
t=1 ψt,k for each sense k.

Results Figure 7 shows the estimation results for
three targets; Infinite SCAN acquires senses with
more appropriate granularity (coarse-grained) and
captures sense transitions more interpretably com-
pared to SCAN. Figure 7(a) shows the results on
the target word coach. Infinite SCAN captures two
senses, and also indicates changes, with the sense
vehicle (blue) becoming narrower and the sense
teach (orange) becoming more dominant, which is
consistent with the analysis by Aida et al. (2021).
SCAN also captures these senses, but there are
overlaps in captured sense (e.g., orange and pur-
ple), making it difficult to capture the spread of
senses. For the target word record in Figure 7(b),
three senses emerge: audio record (blue), docu-
ment or history (orange), and achievement (green).



According to Hamilton et al. (2016b), the new
sense, which is similar to words such as music
and tape, emerged around 1920; they are captured
more clearly by Infinite SCAN. For the word power
in Figure 7(c), our model captures the senses in-
cluding mental power (blue), authority (orange),
legal power (green), and energy (red). The latter
is an example of “sense birth” (Mitra et al., 2014),
described by Frermann and Lapata (2016), and our
model captures such a trend. By contrast, in SCAN,
the sense energy is divided into two senses (red and
gray), making it difficult to identify the correct
change or birth of the sense.

7 Conclusion

In this study, we proposed a statistical model that
can jointly estimate the number of senses and se-
mantic change of words by combining a dynamic
topic model on GMRF with a Dirichlet process. In
our experiments, we demonstrated that the pro-
posed model correctly estimates the number of
word senses and semantic changes in detail, and
showed that the proposed model outperforms base-
line models.

In the future, we would like to enhance the model
by incorporating linguistic knowledge on semantic
change (Ghanbarnejad et al., 2014; Feltgen et al.,
2017). Furthermore, we would like to work on ana-
lyzing semantic change using the proposed method
such as classification of change patterns (Hamilton
et al., 2016a).

8 Limitations

8.1 Dataset limitation

The proposed model assumes continuous time shift
(i.e. iGMRF) and existence of time-continuous
corpus, although few languages have a large scale
diachronic corpus. Because the proposed model is
a Bayesian model, the unigram mixtures (ϕt and
ψt) at a time point t can theoretically be estimated
even if a small amount of data exists at time t.

#Senses
Samples 1 2 3 4 5

1,000 0 5 10 50 N/A
2,500 0 5 5 30 40
5,000 N/A 5 5 30 30

10,000 N/A 0 0 5 10

Table 4: Sufficient threshold of low-frequency words
for the model to correctly estimate the number of senses
and sense change for different sample sizes.

However, if there is a time point with no data at all,
the estimation is likely to fail because it violates
the assumptions of the model. One solution is to
adopt a relatively large value for the parameter ∆t,
which controls the granularity of time shift, but for
a more detailed analysis, it is necessary to use a
large scale time-continuous dataset.

8.2 Model limitation

We investigated the conditions under which the
model can correctly estimate the number of senses
and the sense change of words on artificial data
generated by different conditions. We showed that
Infinite SCAN can estimate the sense change under
the hyperparameter conditions for artificial data
generation outlined in Section 5. However, estima-
tion does not always work well under all the con-
ditions. To examine these conditions, we searched
for a threshold of low-frequency words at which
the model works correctly on artificial data for dif-
ferent numbers of senses and samples.13

Table 4 shows the sufficient threshold of low-
frequency words at which the model works cor-
rectly on artificial data for different number of
senses and samples (i.e. when the vocabulary size
was fixed at V = 5, 000 and the number of sam-
ples varied from D=1, 000 to 10, 000 for different
numbers of senses.) Note that N/A in the table
indicates that the estimation fails no matter what
the threshold value is. These results indicate that
the smaller the sample size is, the larger the re-
quired threshold becomes. This is because the data
becomes sparser as the number of samples is re-
duced, and that more low-frequency words must be
truncated to capture senses correctly. Additionally,
the threshold for low-frequency words increases
with the number of senses since data with more
senses accelerate data sparsity. Therefore, data
must be prepared with a sample size of at least half
the vocabulary size, and the threshold must be set
appropriately to stabilize the estimation.

These limitations are also present in real data
where it is difficult to estimate the number of senses
and semantic changes for words with a large num-
ber of senses or for data with small sample sizes.
This can be solved by appropriately modifying the
data distribution (i.e. vocabulary) by thresholding.
We would like to address the formulation of these
heuristics in the future.

13The evaluation of the model estimation was performed
manually by visualizing the sense distribution.
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A Pseudo-code of MCMC algorithm

Algorithm 1 shows the MCMC algorithm for the
estimation of Infinite SCAN. In practice, we sam-
ple z, ϕ and ψ for 2,000 iterations, and sample κ(k)ϕ

for each sense k after every 50 iterations, starting
from iteration 150.

Algorithm 1: MCMC algorithm

1 Initialize κ(k)ϕ = 4.0 (for all k)
2 Initialize κψ = 100.0
3 Initialize a = 7.0, b = 3.0
4 for t = 1 . . . T do
5 Initialize

αt ∼ N
(
1
2(αt−1 + αt+1), κ

−1
ϕ

)
6 Set ϕt = LSB(αt)
7 for k = 1 . . .K do
8 Initialize βt,k ∼

N
(
1
2(βt−1,k + βt+1,k), κ

−1
ψ

)
9 Set ψt,k = Softmax(βt,k)

10 end
11 end
12 for j = 1 . . . J do
13 Sample z according to Eq. (8)
14 for t = 1 . . . T do
15 Sample ϕ according to posterior in

Eq. (9)
16 Sample ψ according to posterior in

Eq. (10)
17 end
18 Sample κϕ according to posterior in Eq.

(11)
19 end

B Statistics of snippets used for the
evaluation of the number of sense

Table 5 shows the statistics of snippets used for the
evaluation of the number of senses (Sections 6.3
and 6.4). This table lists the number of words in
each sense, the average number of samples, and the
vocabulary size.

#Senses #Words Samples #Vocab

1 30 15,922 14,403
2 33 17,085 15,014
3 30 17,471 15,868
4 17 18,328 16,388
5 10 18,178 16,645

Table 5: Snippet statistics of target words randomly
selected from OntoNotes. Sample size and vocabulary
size are shown as averages.

C Statistics of snippets used for the
evaluation of sense change

Table 6 shows the statistics of snippets used for the
evaluation of sense change (Section 6.5). The table
lists the years, sample size, and vocabulary size for
each target word.

Word Years Samples #Vocab

coach 1811–2009 9,758 11,962
record 1815–2009 33,992 23,886
power 1810–2009 142,527 42,932

Table 6: List of target words and snippet statistics.


