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Abstract
We present a novel statistical model for dynamics of various
singing behaviors, such as vibrato and overshoot, in a funda-
mental frequency (F0) contour. These dynamics are the impor-
tant cues for perceiving individuality of a singer, and can be a
useful measure for various applications, such as singing skill
evaluation and singing voice synthesis. While most previous
studies have modeled the dynamics using a second-order linear
system, the automatic and accurate estimation of model param-
eters has yet to be accomplished. In this paper, we first de-
velop a complete stochastic representation of the second-order
system with Gaussian processes from parametric discretization,
and propose a complete, efficient scheme for parameter estima-
tion using the Expectation-Maximization (EM) algorithm. Ex-
perimental results show that the proposed method can decom-
pose an F0 contour into a musical component and a dynamics
component. Finally, we discuss estimating singing styles from
the model parameters for each singer.
Index Terms: Singing voices, Fundamental frequency (F0),
Gaussian Processes, EM algorithm, Singing voice synthesis

1. Introduction
The goal of this work is to characterize both musical-note in-
formation and the dynamics of various singing behaviors, such
as vibrato and overshoot, in a sung melodic contour, i.e., an F0
sequence. The importance of dynamics for perceiving individ-
uality of a singer is reported in [1, 2] based on psycho-acoustic
experiments, and this means that the dynamics can be a useful
measure for identifying of singing styles [3], singing skill eval-
uation [4], and the synthesis of more natural and various singing
voices [5, 6, 7, 8]. On the other hand, musical-note information
is useful for various applications such as Query-By-Humming
and the automatic clustering of songs [9, 10].

Most previous studies have used a deterministic, second-
order linear system to represent the F0 dynamics of singing
voices [1, 11]. The transfer function of the system is described
as

H(s) = Ω2

s2 + 2ζΩs+Ω2
, (1)

where ζ and Ω denote the damping ratio and the damped natu-
ral frequency, respectively. In the F0 control model for singing
voices, the dynamics are represented not only by Critical damp-
ing (ζ=1) used in the Fujisaki model [12] that controls the F0
contours of speaking voices, but also by Over-damping (ζ>1),
Under-damping (0<ζ<1), and Steady oscillation (ζ=0). This
is because the F0 fluctuations in singing voices are larger and
more rapid than those of speaking voices. In [1], using the
F0 contour generated by the convolution of a step-wise signal
which corresponds to the musical-note sequence and the im-
pulse response of Eq. (1), natural and expressive singing voices
were synthesized. However, ζ and Ω were controlled manually
based on psycho-acoustic experiments.
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Figure 1: Decomposition of F0 contour into three components
based on second-order linear system

On the other hand, we have previously proposed a stochas-
tic framework that learns these parameters and the step-wise
signal simultaneously from an observed F0 contour [13]. As
seen in Fig. 1, we divided the F0 contour into segments and
decomposed the F0 contour for each segment into three compo-
nents, i.e., the step signal f(t), the impulse response h(t) of the
second-order system, and the residue ε(t). f(t) indicates the
relative pitch that the singer attempts to sing. h(t) represents
the temporal attack of the musical note and overshoot. System
output y(t) denotes the convolution of f(t) and h(t). ε(t) is
the residual component including vibrato. Therefore, we ap-
proximated the second-order differential equation given by the
inverse Laplace transform of Eq. (1) by the difference equation:

(aA+ bB +C)y = f (a := 1/Ω2, b := 2ζ/Ω), (2)

where f = [f1, f2, . . . , fN ]
T and y = [y1, y2, . . . , yN ]

T de-
note discrete signals sampled with a sampling period Δ. N is
the signal length, and aA+ bB+C represents the inverse im-
pulse response. We defineA,B, andC as follows:
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C :=

2
66664

0
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0 1 0

. . .
. . .

. . .
0 0 1 0

3
77775 . (3)

Then, we estimated the model parameters iteratively based on
the maximum-likelihood approach, so that the residual error be-
tween both sides of Eq. (2) were minimized. However, the es-
timation accuracy was poor in parts of the transition between
musical notes. Since various dynamics, such as the attack and
vibrato, are mixed in each segment, we consider that over-fitting
occurs with the conventional method which estimates the model
parameters of the second-order linear system directly.

In this paper, we propose a complete stochastic representa-
tion of the second-order linear system with Gaussian processes
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(GPs) [14]. Therefore, we parametrically approximate the im-
pulse response of the system using multiple oscillation bases
and explicitly introduce the residual component › as a random
variable. Then, we develop a efficient scheme for parameter
estimation using the EM algorithm. Our experimental results
show that the proposed method can appropriately decompose
the F0 contour into the target musical note and the dynamics.
Furthermore, we also discuss estimating singing styles from the
model parameters for each singer.

2. Impulse response approximation with
multiple oscillation bases

We introduce a discrete-time representation of Eq. (1) to replace
the difference approximation Eq. (2). The impulse response of
Eq. (1) has four cases:

h(t) =

8>>>>><
>>>>>:

Ωe−ζΩt

2
√

ζ2−1

`
e
√

ζ2−1Ωt − e−
√

ζ2−1Ωt´, (ζ > 1)

Ωe−ζΩt√
1−ζ2

`
sin(

p
1− ζ2Ωt

´
, (0 < ζ < 1)

Ω2te−Ωt, (ζ = 1)

Ω sin(Ωt), (ζ = 0)

Discretizing these impulse responses at Δ, the input-output
relation is described by y = Φf . For example, when ζ = 1,Φ
is described as a lower triangular matrix

Φ =

2
6664

Ω2Δe−ΩΔ 0
2Ω2Δe−2ΩΔ Ω2Δe−ΩΔ

...
. . .

. . .
NΩ2Δe−NΩΔ . . . 2Ω2Δe−2ΩΔ Ω2Δe−ΩΔ

3
7775 .

However, since h(t) has multiple cases, we compose matrix Φ
as follows:

Φ−1 � w1Υ
(1) + w2Υ

(2) + . . .+ wIΥ
(I), (4)

where we determine the values of ζ and Ω manually and pre-
liminarily calculate I oscillation bases {Φ(1),Φ(2), . . . ,Φ(I)}.
For convenience, we define the impulse response Υ(i) :=

(Φ(i))−1 of the inverse filter and approximate Φ−1 by com-
bining these matrices linearly, where we assume that weight pa-
rameters w := {w1, w2, . . . , wI} are sparse. This means that
Φ−1 are expressed by only a few oscillation bases. Therefore,
the input-output relation of the system is obtained by

(w1Υ
(1) + w2Υ

(2) + . . .+ wIΥ
(I))y = f . (5)

Note that the transfer function Eq. (1) is converted into the form
Ψy = f as seen from Eqs. (2) and (5).

3. Statistical modeling of second-order
linear system based on Gaussian Processes
We statistically model the input-output relations of the system
represented by Eqs. (2) and (5) based on GPs.

3.1. Modeling of input step signal
We assume input f is a step signal (see Fig. 1). We statistically
model f as a random variable generated from the multivari-
ate Gaussian distribution N (u, αIN ), where we define u =
[u1, . . . , uN ]

T = u[1, 1, . . . , 1]T = u1. Scalars u and α are
the relative pitch and a hyperparameter representing the vari-
ance of the distribution, respectively. α is set experimentally.
IN denotes theN×N identity matrix. Since y is a linear com-
bination of Gaussian distributed variables given by the elements
of f , y is itself Gaussian y ∼ N

`
Ψ−1u, αΨ−1(Ψ−1)T

´
.

It should be noted that this model provides us with a par-
ticular example of GPs. A key point about GPs is that the joint
distribution over N elements of y is specified completely by
the second-order statistics, namely the mean and covariance. In
vanilla GPs, since the mean is mainly zero, the covariance ma-
trix, which is usually denoted by the Gram matrix K, is repre-
sented by combining multiple kernel matrices linearly, referred
to as the Multiple Kernel Learning (MKL) [15]. This technique
can exploit the temporal correlations between observations in-
stead of treating the observations as i.i.d. The GPs with the
MKL have received increased attention in the machine-learning
community. However, in our case, since the mean includes
the variable Ψ−1, we represent Ψ by the linear combination
of multiple oscillation bases. In this respect, we refer to this
representation as GPs with the multiple basis learning.

3.2. Likelihood function and prior probability

We introduce the residual component › (Gaussian white noise,
› ∼ N (0, βIN )) and assume that the observed F0 sequence
o = [o1, o2, . . . , oN ]

T is given by output y with › so that
o = y + ›, where β is a hyperparameter representing the vari-
ance of the noise. Since we suppose that y and › are mutually
independent, from the definition of GPs, the likelihood function
of Θ := {Ψ, u, β} is given as follows:

P (o|Θ) = 1

(2π)N/2|Σ|1/2 exp
n
− 1

2
(o − —)TΣ−1(o − —)

o
,

“
— = Ψ−1u, Σ = αΨ−1(Ψ−1)T + βIN

”
. (6)

We assume that the prior distributions for Ψ, u, and β are
independent, which yields P (Θ) = P (Ψ)P (u)P (β), and that
P (u) and P (β) are uniform distributions. For P (Ψ), we also
assume the independence of parameters, which yields

P (Ψ) =

j
P (a)P (b), (Difference approximation)

P (w), (Impulse response approximation)
,

and that P (a) and P (b) are uniform distributions. P (w) corre-
sponds to the sparsity cost described in Section 2, for which a
natural choice is a generalized Gaussian prior

P (w) =
IY

i=1

λp

2Γ(1/p)
exp−λp|wi|p (7)

where p and λ are the parameters that determine the shape of the
distribution. When 0 < p < 2, P (w) becomes super-Gaussian
and promotes sparsity if the norm ofw is bounded.

4. Parameter estimation algorithm based
on Expectation-Maximization algorithm

Given observed F0 sequence o, we want to determine the es-
timate of Θ that maximizes the posterior density P (Θ|o) ∝
P (o|Θ)P (Θ). However, it is difficult to obtain an optimum
solution for the maximum a posterior (MAP) estimate of Θ an-
alytically. This is because (1) o is given by y with ›, (2) the
objective function is nonlinear with respect to w. To cope with
these problems, (1) we partition o into y and › using the EM
algorithm, (2) Applying the auxiliary function method [16] to
the M-step, we design an auxiliary function of the Q-function.

4.1. Definition of complete data

When applying the EM algorithm to the current MAP estima-
tion problem, the first step is to define the “complete data”. We
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denote the complete data as x := [yT, ›T]T. Taking the con-
ditional expectation of the log-likelihood given x and Θ = Θ′

and then adding logP (Θ), we obtain theQ-function as follows:

Q(Θ,Θ′)
c
=
1

2

h
log |Λ−1| − tr

“
Λ−1

E[xxT|o; Θ′]
”

+ 2mTΛ−1
E[x|o; Θ′]− mTΛ−1m

i
+ logP (Θ), (8)

„
x :=

»
y
›

–
, m :=

»
Ψ−1u
0

–
, Λ−1 :=

»
1
α
ΨTΨ 0
0 1

β
IN

–«
,

where the many-to-one relationship between the complete data
x and the incomplete data o is described as o = Hx with
H := [IN IN ]. E[x|o; Θ′] and E[xxT|o; Θ′] are described
by

E[x|o; Θ′] = m+ΛHT(HΛHT)−1(o − Hm), (9)

E[xxT|o; Θ′] = Λ−ΛHT(HΛHT)−1HΛ

+ E[x|o; Θ′]E[x|o; Θ′]T. (10)

For convenience, we segment E[x|o; Θ′] and E[xxT|o; Θ′]
into small sections as follows:

E[x|o; Θ′] =

»
x̄y

x̄ε

–
, E[xxT|o; Θ′] =

»
Ry ∗
∗ Rε

–
. (11)

4.2. M-step update formulae
We can derive the M-step update formulae for all the model pa-
rameters by employing the definitions of the complete data and
the prior. In this subsection we derive the M-step update formu-
lae for the impulse response approximation method described
in Section 2 owing to space limitations, where Ψ corresponds
toΦ−1 of Eq. (4). Collecting terms that depend on Θ from Eq.
(8), we obtain the objective function as follows:

f(w, u, β) :=− N

2
logαβ +

NX
n=1

log
“ IX

i=1

wiΥ
(i)
n,n

”

+
1

α
uTΨx̄y − 1

2α
tr(ΨTΨRy)− 1

2β
tr(Rε)

− 1

2α
uTu − λp

IX
i=1

|wi|p, (12)

where Υ(i)n,n is the nth diagonal component of the matrixΥ(i).
We utilize the auxiliary function method [16] to maximize
f(w, u, β). To define an auxiliary function of Eq. (12), we
use two inequalities:

NX
n=1

log
“ IX

i=1

wiΥ
(i)
n,n

”
≥

NX
n=1

IX
i=1

γi,n log
wiΥ

(i)
n,n

γi,n
, (13)

|wi|p ≤ p|w̄i|p−1wi + |w̄i|p − p|w̄i|p (0 < p ≤ 1), (14)

with auxiliary variables w̄ := {w̄1, w̄2, . . . , w̄I} and ‚ :=
{γ1,1, . . . , γI,N}. Hence, we define the auxiliary function

f+(w, u, β, w̄,‚)

:=− N

2
logαβ +

NX
n=1

IX
i=1

γi,n log
wiΥ

(i)
n,n

γi,n
+
1

α
uTΨx̄y

− 1

2α
tr(ΨTΨRy)− 1

2β
tr(Rε)− 1

2α
uTu

− λp
IX

i=1

“
p|w̄i|p−1wi + |w̄i|p − p|w̄i|p

”
, (15)

where f(w, u, β) ≥ f+(w, u, β, w̄,‚) is satisfied. We have
equality if w̄i = wi and γi,n = w̄iΥ

(i)
n,n/

P
i′ w̄i′Υ

(i′)
n,n, hence

Eq. (15) satisfies the definition of the auxiliary function method.
By iteratively updating E[x|o; Θ′], E[xxT|o; Θ′], Θ, w̄, and
‚, f(w, u, β) will converge to a stationary point. As the update
rules for w̄ and ‚ are shown above, we only need to derive the
update rule for Θ. Differentiating Eq. (15) partially w.r.t. wi′

and setting to zero, we obtain

1

α

IX
i=1

tr
“

Ry
TΥ(i)

T
Υ(i

′)
”
wi − 1

α
uTΥ(i

′)x̄y

+ λpp|w̄i′ |p−2wi′ −
NX

n=1

γi′,n
wi′

= 0. (16)

Solving this nonlinear simultaneous equation for i′ = 1, . . . , I
based on the coordinate descent method, we obtain w. Update
rules for u and β are the followings:

u =
1

N
1TΨx̄y, β =

1

N
tr
`
Rε

´
. (17)

The proposed algorithm is summarized as follows:
Initial step: Initialize Θ (w, u, and β).
E-step: Evaluate E[x|o; Θ′] and E[xxT|o; Θ′] using the cur-

rent parameter values Θ′ and update w̄ and ‚.
M-step: Updatew, u, and β according to Eqs. (16) and (17)
If the convergence criterion of Eq. (12) is not satisfied, then let
Θ′ ← Θ and return to the E-step. We can similarly derive the
M-step for the difference approximation method Eq. (2) based
on the auxiliary function method.

5. Experiment
The effectiveness of using the proposed method to decompose
F0 contours into musical-note components and dynamics com-
ponents is evaluated experimentally. We compare the parame-
ter estimation accuracy of three methods, i.e., the conventional
method based on the maximum-likelihood approach [13] (Con-
ventional), the proposed method using the difference approxi-
mation (Method 1), and the proposed method using the impulse
response approximation (Method 2). a and b were initially set
at a = 100 and b = 20 calculated by ζ = 1.0 and Ω = 0.1.
Using ζ values that varied from 0.01 to 2 at 0.02 intervals and
Ω values that varied from 0.05 to 3 at 0.005 intervals, we calcu-
lated Υ (I = 5100). α, β, and wi were initially set at α = 2,
β = 100, and wi = 1/I . u was initially set at the median value
of the observed signal o. λ and p were set at λ = 10000 and
p = 0.8. We determined these initial parameters empirically.

For the first experiment we evaluated the step signal and the
impulse response decomposed from the F0 contour to determine
whether the proposed methods were affected by local minimum
problem. First, we synthesized one hundred F0 contours artifi-
cially using randomly-determined ζ, Ω, and u values, whereN ,
α, and β were set at 300, 2, and 100, respectively. Then, we
estimated model parameters for each F0 contour. Finally, we
calculated the root mean square error (RMSE) between the step
signals, which we obtained by using the original u and the esti-
mated parameter u, respectively. We also calculated the RMSE
between the impulse responses, which we obtained by using the
original ζ and Ω values and the model parameters, respectively.
Tab. 1 shows the average values of the RMSEs between these
signals over all segments. The best value was obtained with
Method 2. We consider that Method 2 solves the local mini-
mum problem more effectively.
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Table 1: Root mean square error (RMSE) between signals

Step signals Impulse o and —
responses [cent]

Conventional 21.7 5.29×10−2 44.7
Method 1 1.94 65.2×10−4 42.9
Method 2 0.67 2.98×10−4 34.7
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Figure 2: Comparing observed signal owith signal— generated
by model parameters of Method 2

For the second experiment we evaluated the convergence
performance of the proposed methods using real F0 contours.
We used singing signals provided by six singers. We recorded
signals for each gender in the professional classical, profes-
sional pop, and amateur categories. Each subject sang songs
with Japanese lyrics (two patterns) and hummed, in both cases
without musical accompaniment. The songs were “Twinkle,
Twinkle, Little Star” and “Ode to Joy”. In all, 36 singing sig-
nals were recorded. The F0 contour was estimated every 5 ms
(Δ = 5ms) using YIN [17] and represented in cents, so that
one-tempered semitone corresponded to 100 cents. Using the
linear interpolation, we smoothed F0 in voiceless consonants.
We then divided the F0 contours into 1323 segments manually
as seen in Fig. 1 and subtracted the starting F0 value over each
segment so that the starting F0 value of the segment was zero.
Finally, we estimated the model parameters for each segment.

The average values of the RMSE between an observed sig-
nal o and the signal— generated by model parameters are shown
in Tab. 1. We obtained the smallest RMSE for Method 2.
The temporal attack of the musical note was successfully repre-
sented by the model parameters (see Fig. 2). Hence, the RMSE
corresponds to a residual component such as vibrato. Since
Method 2 represents the dynamics by a linear combination of
various oscillation bases and regularizes weighting parameters
w, we consider that over-fitting for the model is controlled and
the RMSE is the smallest among three methods. Furthermore,
the periodic components such as vibrato are included in the
residue ›. Instead of modeling › by Gaussian white noise, we
plan to model › using the periodic kernel similarly with GPs.

Fig. 3 shows ζ and Ω for each singer. Estimating w for
each segment using Method 2, we plotted the average values of
ζ andΩ corresponding to the maximum value of the elements of
w over all segments. If ζ and Ω are small, this means that the
oscillation phenomenon is Under-damping such as overshoot
and the rise time of the musical note is longer. Since amateurs
have poor singing skills, ζ and Ω are small. Fig. 4 shows his-
tograms of parameter u for classical and amateur singers. We
confirmed that the histogram has peaks at the integral multiples
of the semitone for classical and pop singers. However, the his-
togram peaks for amateurs are blurred. This means that it is
difficult for amateurs to sing at the correct pitch. In the future,
we plan to analyze singing styles based on estimated ζ, Ω, and
u values using a large singing database.

6. Concluding remarks
This paper proposed a statistical representation of F0 dynamics
in singing voices based on GPs with multiple oscillation bases,
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and derived a model parameter estimation algorithm based on
the EM method. Our experiments showed that the proposed
method can solve the local minimum problem and decompose
an F0 contour into a musical note component and a dynamics
component. Furthermore, we examined the differences between
singing styles based on the estimated parameters. In the future,
we plan to divide the F0 contour into segments using Hidden
Markov Model (HMM), and evaluate its ability to detect partic-
ular singing behaviors automatically such as vibrato and over-
shoot and singing voice synthesis. We also want to employ the
proposed method for automatic speech recognition and gesture
recognition.
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