
Research Memorandum No. 1209 01/06/2020

Unbounded Slice Sampling

Mochihashi Daichi (The Institute of Statistical Mathematics)

The Institute of Statistical Mathematics

10-3, Midori-cho, Tachikawa,
Tokyo, 190-8562, Japan

Unbounded Slice Sampling

Daichi Mochihashi

The Institute of Statistical Mathematics

daichi@ism.ac.jp

2020-1-5 (Sun)

Abstract

Slice sampling is an efficient Markov Chain Monte Carlo algorithm to sample from an
unnormalized density with acceptance ratio always 1. However, when the variable to sample
is unbounded, its “stepping-out” heuristic works only locally, making it difficult to uniformly
explore possible candidates. This paper proposes a simple change-of-variable method to slice
sample an unbounded variable equivalently from [0, 1).

1 Introduction

Slice sampling [1] is one of the Markov Chain Monte Carlo (MCMC) methods to sample

from one-dimensional distribution. Because its acceptance probability is always 1 as opposed to

famous Metropolis-Hastings algorithm [2], slice sampling is widely employed in modern statistics

and machine learning problems, especially for sampling hyperparameters of a statistical model

where each hyperparameter is often univariate but has a nontrivial likelihood surface.

When the variable to sample is not bounded, an algorithm called “stepping-out” [3] is usually

employed to adaptively adjust the interval to sample from based on the current value of the

variable. However, this “stepping-out” works only locally, thus will be potentially trapped to

local modes in multimodal likelihoods. In contrast, in this paper we propose a simple method to

uniformly sample from an unbounded variable through an appropriate reparametrization with a

unit interval [0, 1).

2 Slice sampling

Slice sampling iteratively draws x from a probability distribution

p(x) =
f(x)

Z
(1)

without knowing the normalizing constant Z =

∫
f(x)dx by the following general algorithm,

starting from an initial value x(0):

Algorithm 1 General slice sampling

1: for t = 1 · · ·T do

2: ℓ = f(x(t−1))

3: ρ ∼ Uniform[0, ℓ)

4: x(t) ∼ Uniform({x : f(x) > ρ})
5: end for

1

(a) Sigmoid map p =
1

1 + e−x
(b) Logit map x =

p

1− p

Figure 1: One-to-one map between p ∈ [0, 1) and unbounded x.

In practice, Step 4 of the Algorithm 1 is not trivial, and usually “stepping-out” heuristic [1]

is employed to determine the interval from which x is uniformly drawn, starting from an initial

interval enclosing x that is adaptively expanded.

However, the efficiency of “stepping-out” depends on setting the initial interval whose appro-

priate scale for the problem is not known in advance. Moreover, it works only locally: if f(x)

has multiple and distant modes, it tends to wander around a single mode and will spend a very

long time to explore different modes that might have higher probabilities.

On the other hand, if x is bounded and known to always reside in the interval [st , ed], slice

sampling is very easy using the following algorithm:

Algorithm 2 Bounded slice sampling

1: for t = 1 · · ·T do

2: ℓ = f(x(t−1))

3: ρ ∼ Uniform[0, ℓ)

4: while true do

5: x ∼ Uniform[st , ed] /* generate a candidate */

6: if f(x) > ρ then

7: x(t) = x; break

8: else /* modify interval */

9: if x < x(t−1) then

10: st := x

11: else

12: ed := x

13: end if

14: end if

15: end while

16: end for

This is an efficient binary search that quickly draws x uniformly over the region [st , ed] where

f(x) > ρ.

2

3 Unbounded slice sampling

Algorithm 2 is effective for a bounded x that is known to reside in [st , ed]. However, even

when x is unbounded, we can sample x through an one-to-one map between [0, 1) and R.

General unbounded variate For example, using a sigmoid map

p =
1

1 + e−x
(2)

i.e. x = − log

(
1

p
− 1

)
(3)

for p ∈ [0, 1) shown in Figure 1(a), for each x ∈ R we can associate p ∈ [0, 1) and vice versa.

Since
dx

dp
=

1

p(1− p)
, (4)

we can alternatively sample p in place of x using the exchange of variables:

f(x)dx = f(x)
dx

dp
dp = f

(
− log

(
1

p
− 1

))
1

p(1− p)
dp (5)

Using (5) for the Algorithm 2 in place of f(x) can sample p ∈ [0, 1), from which we can recover

x by the relationship (3).

Positive variate When x > 0, for example we can exploit a map

x =
p

1− p
(6)

therefore
dx

dp
=

1

(1− p)2
, (7)

leading

f(x)dx = f(x)
dx

dp
dp = f

(
p

1− p

)
1

(1− p)2
dp (8)

to sample p ∈ [0, 1) and obtain x by the relationship (6).

Using this reparameterization, we can slice sample an unbounded x essentially by a “proba-

bilistic binary search” always on [0, 1). We included sample of MATLAB and C codes for our

unbounded slice sampling in Appendix B and C.

In practice, sometimes we cannot compute a corresponding p for very large (or small) x using

equation (2). Therefore, instead of (2) we can use

p = σ(x/A) =
1

1 + e−x/A
(9)

for some constant A > 0 as shown in Figure 2. While every x ∈ R is mathematically equivalent,

notice that usually the parameter to sample from a statistical model roughly1 resides in this

regime; even if x will exceed over this regime, we can safely rescale x to fit into a decent interval.

We empirically confirmed that A = 100 usually works fine for −1000 < x < 1000 (see Section 4).

4 Experiments

1This is important, because we do not enforce a strict interval to sample x in this paper.

3

-1 0 1 2 3 4
0

100

200

300

400

500

(a) f(x) = exp(−x(x−1)(x−2)(x−3.5))

250 300 350 400 450 500 550
0

500

1000

1500

(b) f(x) = exp(−(x−500)2/10)

0 200 400 600 800 1000 1200
0

2000

4000

6000

8000

10000

(c) f(x) = exp(−(x−1000)2/100)

Figure 3: Unbounded slice sampling of x ∈ R.

Figure 2: Modified sigmoid map p =
1

1 + e−x/100
.

We conducted some experiments to confirm that

our unbounded slice sampler correctly samples from

a given distribution. Using the C code shown in Ap-

pendix A, we can easily sample from p(x).

For a general unbounded case x ∈ R, Figure 3 shows
the plots of sampled x from (a) f(x) = exp(−(x−
500)2/10), (b) f(x) = exp(−(x−500)2/10), and (c)

f(x) = exp(−(x−1000)2/100). Note that p(x) will

be high on different regimes for each case: roughly

0 < x < 4 for (a), x ≈ 500 for (b), and x ≈ 1000 for

(c), while these regimes are not known in advance,

and they have different variances. Figure 3 clearly

shows we can correctly sample from p(x), even when

x is very large using the map (9) with A=100. The

average step of “binary search”, i.e. the number of function evaluations for the loop in Step 4 of

the Algorithm 2, is 11.44 for (a), 16.48 for (b), and 9.34 for (c).

For a positive case x ∈ R+, Figure 4 shows the results for (a) f(x) = x4e−x and (b) f(x) =

exp(−(x−1000)2/100); (a) means p(x) ∼ Gamma(5, 1).

Comparison with stepping-out To confirm the advantage of our unbounded slice sampling,

we also conducted an experiment to sample from a multimodal distribution. Specifically, Fig-

4

0 5 10 15 20
0

50

100

150

200

250

300

350

(a) f(x) = x4e−x (= Gamma(5, 1))

0 200 400 600 800 1000 1200
0

1000

2000

3000

4000

5000

6000

(b) f(x) = exp(−(x−1000)2/100)

Figure 4: Unbounded slice sampling of x > 0.

-5 0 5 10 15
0

500

1000

1500

(a) Unbounded slice sampling

-5 0 5 10 15
0

200

400

600

800

(b) Stepping-out algorithm (width=1)

Figure 5: Comparison with “stepping-out” on a Gaussian mixture model p(x) = 0.8N (x|0, 12)+
0.2N (x|10, 12) using 10, 000 samples.

ure 5 shows a draw of 10, 000 samples from a Gaussian mixture model p(x) = 0.8N (x|0, 12) +
0.2N (x|10, 12) using unbounded slice sampler and “stepping-out” algorithm, respectively.

Clearly, “stepping-out” is stuck into the first mode because the sampling starts from x = 1,

and this tendency remained the same over multiple simulations. Moreover, because “stepping-

out” linearly increases the interval to sample from, sampling from a distant density shown in

Figure 3(c) required about 2, 000 function evaluations at first to reach the mode, while unbounded

slice sampling required only 9.34 as described before, thanks to the efficient “probabilistic binary

search” on R.

References

[1] Radford M. Neal. Slice sampling. Annals of Statistics, pages 705–741, 2003.

[2] W. R. Gilks, S. Richardson, and D. J. Spiegelhalter. Markov Chain Monte Carlo in Practice.

Chapman & Hall / CRC, 1996.

[3] David J. C. MacKay. Information Theory, Inference, and Learning Algorithms. Cambridge

University Press, 2003.

5

Appendix

A C code of easy slice sampling

#include "slice.h"

double

f (double x, void *arg)

{

return - x * (x - 1) * (x - 2) * (x - 3.5);

}

main () {

int i, N = atoi (argv[1]);

double x = 1;

for (i = 0; i < N; i++) {

x = slice_sample (x, f, NULL);

printf("%lf\n", x);

}

}

B C code for unbounded slice sampling
/*
* slice.c
* Unbounded slice sampling with ease.
* $Id: unbounded.tex,v 1.17 2020/01/03 01:23:08 daichi Exp $
*
*/

#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include "random.h"

static double A = 100.0;
typedef double (*likfun)(double x, void *args);

static double
expand (double p) /* p -> x */
{

return - A * log (1 / p - 1);
}

static double
shrink (double x) /* x -> p */
{

return 1 / (1 + exp(- x / A));
}

static double
expandp (double p) /* p -> (x > 0) */
{

return p / (1 - p);
}

static double
shrinkp (double x) /* (x > 0) -> p */
{

return x / (1 + x);

6

}

double
slice_sample (double x, likfun loglik, void *arg)
{

double st = 0, ed = 1;
double r, rnew, slice, newlik;
int iter, maxiter = 1000;

r = shrink (x);
slice = (*loglik)(x, arg) - log (A * r * (1 - r)) + log (RANDOM);

for (iter = 0; iter < maxiter; iter++)
{

rnew = unif (st, ed);
newlik = (*loglik)(expand(rnew), arg)

- log (A * rnew * (1 - rnew));

if (newlik > slice)
return expand (rnew);

else if (rnew > r)
ed = rnew;

else if (rnew < r)
st = rnew;

else
return x;

}
fprintf(stderr, "slice_sample: max iteration %d reached.\n", maxiter);
return x;

}

double
slice_sample_positive (double x, likfun loglik, void *arg)
{

double st = 0, ed = 1;
double r, rnew, slice, newlik;
int iter, maxiter = 1000;

r = shrinkp (x);
slice = (*loglik)(x, arg) - 2 * log (1 - r) + log (RANDOM);

for (iter = 0; iter < maxiter; iter++)
{

rnew = unif (st, ed);
newlik = (*loglik)(expandp(rnew), arg) - 2 * log (1 - rnew);

if (newlik > slice)
return expandp (rnew);

else if (rnew > r)
ed = rnew;

else if (rnew < r)
st = rnew;

else
return x;

}
fprintf(stderr, "slice_sample: max iteration %d reached.\n", maxiter);
return x;

}

#if 1

double
f (double x, void *arg)
{

return - x * (x - 1) * (x - 2) * (x - 3.5);
}

double

7

g (double x, void *arg)
{

return - 10 * (x + 1000) * (x + 1000);
}

double
h (double p, void *arg)
{

double a = 2, b = 3;
return (a - 1) * log (p) + (b - 1) * log (1 - p);

}

int
main (int argc, char *argv[])
{

int i, N = atoi(argv[1]);
double x = 0.5;

for (i = 0; i < N; i++)
{

x = slice_sample (x, g, NULL);
// x = slice_sample_positive (x, f, NULL);
printf("%.4lf\n", x);

}
}

#endif

C MATLAB code for unbounded slice sampling
function xnew = slice_sample (x,likfun,varargin)
% xnew = slice_sample (x,likfun,varargin)
% Unbounded slice sampling in MATLAB.
% $Id: unbounded.tex,v 1.17 2020/01/03 01:23:08 daichi Exp $
global A;
A = 100;
st = 0; ed = 1;
maxiter = 1000;
% function body
r = shrink (x);
slice = feval (likfun,x,varargin{:}) - log (A * r * (r - 1)) + log (rand());
% slice sampling
for iter = 1:maxiter
rnew = unif (st,ed);
xnew = expand (rnew);
newlik = feval (likfun,xnew,varargin{:}) - log (A * rnew * (rnew - 1));
if (newlik > slice)

return;
elseif (rnew > r)

ed = rnew;
elseif (rnew < r)

st = rnew;
else

return;
end

end
fprintf(stderr,’slice_sample: max iteration %d reached\n’,maxiter);
return;

function p = shrink(x) % x -> p
global A;
p = 1 / (1 + exp (- x / A));

function x = expand(p) % p -> x
global A;
x = - A * log (1 / p - 1);

8

function xnew = slice_sample_positive (x,likfun,varargin)
% xnew = slice_sample_positive (x,likfun,varargin)
% Unbounded slice sampling in MATLAB. (only positive)
% $Id: unbounded.tex,v 1.17 2020/01/03 01:23:08 daichi Exp $
st = 0; ed = 1;
maxiter = 1000;
% function body
r = shrinkp (x);
slice = feval (likfun,x,varargin{:}) - 2 * log (1 - r) + log (rand());
% slice sampling
for iter = 1:maxiter
rnew = unif (st,ed);
xnew = expandp (rnew);
newlik = feval (likfun,xnew,varargin{:}) - 2 * log (1 - rnew);
if (newlik > slice)

return;
elseif (rnew > r)

ed = rnew;
elseif (rnew < r)

st = rnew;
else

return;
end

end
fprintf(stderr,’slice_sample: max iteration %d reached\n’,maxiter);
return;

function p = shrinkp (x) % (x > 0) -> p
p = x / (1 + x);

function x = expandp (p) % p -> (x > 0)
x = p / (1 - p);

9

