Boosting-based parse reranking with subtree features

Taku Kudo * Jun Suzuki Hideki Isozaki
NTT Communication Science Laboratories.
2-4 Hikaridai, Seika-cho, Soraku, Kyoto, Japan

{taku,jun,isozaki }@cslab.kecl.ntt.co.jp

Abstract and require careful design to create the optimal fea-
ture set for each task. Kernel methods offer an ele-
This paper introduces a new application of boost-gant solution to these problems. They can work on a
ing for parse reranking. Several parsers have beepotentially huge or even infinite number of features
proposed that utilize the all-subtrees representawithout a loss of generalization. The best known
tion (e.g., tree kernel and data oriented parsing)kernel for modeling a tree is the tree kernel (Collins
This paper argues that such an all-subtrees reprénd Duffy, 2002), which argues that a feature vec-
sentation is extremely redundant and a comparator is implicitly composed of the counts of subtrees.
ble accuracy can be achieved using just a smalRlthough kernel methods are general and can cover
set of subtrees. We show how the boosting algo-almost all useful features, the set of subtrees that is
rithm can be applied to the all-subtrees representadsed is extremely redundant. The main question ad-
tion and how it selects a small and relevant featuredressed in this paper concerns whether it is possible
set efficiently. Two experiments on parse rerank-to achieve a comparable or even better accuracy us-
ing show that our method achieves comparable oing just a small and non-redundant set of subtrees.
even better performance than kernel methods and In this paper, we present a new application of
also improves the testing efficiency. boosting for parse reranking. While tree kernel
implicitly uses the all-subtrees representation, our
_ boosting algorithm uses éxplicitly. Although this
1 Introduction set-up makes the feature space large, l{hrorm

regularization achived by boosting automatically se-

Recent work on statistical natural language par?— A Il and rel feat ¢ Such I
ing and tagging has exploradiscriminativetech- €cts a small and relevant feafure set. Such a sma
feature set is useful in practice, as it is interpretable

nigues. One of the novel discriminative approaches d kes th . ki time faster. Wi
is reranking where discriminative machine Iearningan makes the parsing (reranking) time faster. We

algorithms are used to rerank thebest outputs of also incorporate a variant of the branch-and-bound

generative or conditional parsers. The discriminacchniaue to a_chle\{e efficient feature selection in
. . . .each boosting iteration.
tive reranking methods allow us to incorporate vari-

ous kinds of features to distinguish the correct pars® seneral setting of parse reranking
tree from all other candidates.
With such feature design flexibility, it is non- We describe the general setting of parse reranking.

trivial to employ an appropriate feature set that hﬁsTraining datal is a set of input/output pairs, e.g.,
a good discriminative ability for parse reranking. In » _ {(x1,y1),...,(x1,y)}, wherex; is an in-

early studies, feature sets were given heuristically by, 1 sentence, ang; is a correct parse associated
simply preparing task-dependefetature templates yith the sentencs;.

(Collins, 2000; Collins, 2002). These ad-hoc solu-

tions might provide us with reasonable levels of pe¥-Let)(x) be a function that returns a set of candi-
formance. However, they are highly task dependentate parse trees for a particular sentexnce

e We assume thay(x;) contains the correct parse2.2 Definition of feature function

treey;, i.e.y; € Y(x;) * It is non-trivial to define an appropriate feature func-
tion ®(y) that has a good ability to distinguish the

correct parsg; from all other candidates

In early studies, the feature functions were given
uristically by simply preparinfgature templates

e Let (y) € R? be a feature function that maps
the given parse treg into R? space.w € R% is
a parameter vector of the model. The output par%ae

y of this model on input sentence is given as: .)
§: argma w - g(y) g (Collins, 2000; Collins, 2002). However, such
Yev) ' heuristic selections are task dependent and would
There are two questions as regards this formuldot cover all useful features that contribute to overall
tion. One is how to set the parametevs and the accuracy.

briefly describe the well-known solutions to thesdions, the problem can be reduced to a dual form that

two problems in the next subsections. depends only on the inner products of two instances
®(y1) - (y2). This property is important as we can
2.1 Parameter estimation use akernel trickand we do not need to provide an

explicit feature function. For example, tree kernel
(Collins and Duffy, 2002), one of the convolution
kernels, implicitly maps the instance represented in
a tree into all-subtrees space. Even though the fea-
ture space is large, inner products under this feature

We usually adopt a general loss functibnss(w),
and set the parametesg that minimize the loss,
i.e.,,w = argmin, g« Loss(w). Generally, the loss
function has the following form:

L space can be calculated efficiently using dynamic
Loss(w) = Z L(w, ®(yi),xi), programming. Tree kernel is more general than fea-
i=1 ture templates since it can use the all-subtrees repre-

whereL(w, &(y;), x;) is an arbitrary loss function. Sentation without loss of efficiency.

We can design a variety of parameter estimatio .

methods by changing the loss function. The foIIowg RankBoost with subtree features

ing three loss functiond,og Loss, HingeLoss,and A simple question related to kernel-based parse
Boost Loss, have been widely used in parse rerankreranking asks whethetl subtrees are really needed

ing tasks. to construct the final parametevs. Suppose we

have twolarge treest and¢’, wheret’ is simply gen-

LogLoss = —log) exp w-[®(y:)~2()] erated by attaching a single nodettdn most cases,
yeyle) these two trees yield an almost equivalent discrimi-
HingeLoss = Y max(0,1-w-[®(yi)) = ®()]) native ability, since they are very similar and highly
veea) correlated with each other. Even when we exploit all

BoostLos = %(:)eXP —w [2(yi) — 2(y)] subtrees, most of them are extremely redundant.

yeYV(x;

The motivation of this paper is based on the above

LogLoss is based on the standard maximum likeObservation. We think that only a small set of sub-
lihood optimization, and is used with maximum enlrees is needed to express the final parameters. A
tropy models.HingeLoss captures the errors only compact, non-redundant, and highly relevant feature
whenw - [®(y;) — ®(y)]) < 1. This loss is closely set is useful in practice, as it is interpretable and in-
related to the maximum margin strategy in Svm<reases the parsing (reranking) speed.

(Vapnik, 1998). BoostLoss is analogous to the TO realize this goal, we propose a new boosting-

boosting algorithm and is used in (Collins, 20000based reranking algorithm based on the all-subtrees
Collins, 2002). representation. First, we describe the architecture of

_— _ N our reranking method. Second, we show a connec-
*In the real setting, we cannot assume this condition. Inth|§ bet b ti d SVM dd ibe h
case, we select the parse tgethat is the most similar tg; and ion be W?en OOS_ Ing an S, ana descrioe how
takey as the correct parse trgeg. the algorithm realizes the sparse feature representa-

G) 3.3 RankBoost algorithm

The parameter estimation method we adopt is a vari-
© ® ant of the RankBoost algorithm introduced in (Fre-
und et al., 2003). Collins et al. used RankBoost to
parse reranking tasks (Collins, 2000; Collins, 2002).
The algorithm proceeds fdk iterations and tries to
Figure 1: Labeled ordered tree and subtree relatiominimize the BoostLoss for given training daté

At each iteration, a single feature (hypothesis) is
tion described above. chosen, and its weight is updated.
Suppose we have current parameters:

"zt

3.1 Preliminaries

Let us introduce a labeled ordered tree (or simply w = {wi,wa, ..., wy} € R™.
‘tree’), its definition and notations, first.

Definition 1 Labeled ordered tree (Tree)

A labeled ordered tree is a tree where each node ,
associated with a label and is ordered among its sitifough an incremerat

lings, that is, there is a first child, second child, third W — (w1, W, W+ 6y)
child, etc. (h:0) b2 TR G

Definition 2 Subtree After the update, the new loss is given:

Lett andu be labeled ordered trees. We say that i i
matches., or tis a subtree of; (¢t C w), if there is a Loss(w” (1.5)) - D_oexp — Wik [0(y) — ()] . (@)
one-to-one functiog from nodes irt to u, satisfying hyEYe

the conditions: (1)) preserves the parent-daughter The RankBoost algorithm iteratively selects the op-
relation, (2)1) preserves the sibling relation, (3) timal pair (k,) that minimizes the loss, i.e.,
preserves the labels.

New parametersv*, 5y € R™ are then given by
-rgelecting a single featufeand updating the weight

(k,0) = argminLoss(w* 1 5).

We denote the number of nodestias|¢|. Figure 1 (k,6)
shows an example of a labeled ordered tree and its
subtree and non-subtree. By setting the differential of (1) at O, the following

optimal solutions are obtained:

3.2 Feature space given by subtrees N

. . . I _ 1 i
We first assume that a parse tgeés represented in + = argmax M— M , andé = S log e (2)
alabeled ordered tree. Note that the outputs of part- »
of-speech tagging, shallow parsing, and dependentherewlg = Zi,yey(xi) D(ys,y) - I[I(ty Cy;) —
analysis can be modeled as labeled ordered trees.(t, C y) = b], b € {+1,—1}, andD(y;,y) =

The feature sef consists of all subtrees seen inexp (— w - [®(y;) — ®(y))).
the training data, i.e., Following (Freund et al., 2003; Collins, 2000), we
F=Uiyeymn{t | £ Sy} introduce smoothing to prevent the case when either

W,Forw, is0%:
The feature mappin@(y) is then given by letting
the existence of a treebe a single dimension, i.e., §= 3 log

O(y)={I(t1 Cy),...., I(tm Cy)} € {0,1}"",
_ o _ The function Y(x) is usually performed by a
wherel(-) is the indicator functiomn = ||, and probabilistic history-based parser, which can output

{t1,...,tm} € F. The feature space is essentiallyhot only a parse tree but the log probability of the
the same as that of tree kerriel TR

W+ ez
—k __ whereZ = D(ys,y) ande € RT.
Wtz > D(yi,y) ande

1,yEY(x4)

HIn our experiments, optimal settings fé&f were selected
fStrictly speaking, tree kernel uses the cardinality of eachy qsing development data.
subtree §For simplicity, we fixe at 0.001 in all our experiments.

tree. We incorporate the log probability into thelt is non-trivial to find the optimal treg; that maxi-
reranking by using it as a feature: mizesgain(ty), since the number of subtrees is ex-
onential to its size. In fact, the problem is known
oy) = LB, It Cy)ooo I{tm S y)}, and tpo be NP-hard (Yang, 2004). Howrc)aver, in real appli-
wo = {wo, wi,wa, .., Wi}, cations, the problem is manageable, since the max-
where L(y) is the log probability of a treg un- imum number of subtrees is usually bounded by a
der the base parser ang is the parameter af(y). constant. To solve the problem efficiently, we now
Note that the update algorithm (2) does not allow ugdopt a variant of the branch-and-bound algorithm,
to calculate the parameter,, since (2) is restricted similar to that described in (Kudo and Matsumoto,
to binary features. To prevent this problem, we usé004)
the approximation technique introduced in (Freund o _
et al., 2003). 4.1 Efficient Enumeration of Trees
Abe and Zaki independently proposed an efficient
method, rightmost-extensignfor enumerating all
Recent studies (Schapire et al., 1993fsth, 2001) subtrees from a given tree (Abe et al., 2002; Zaki,
have shown that both boosting and SVMs (Vapnikpp02). First, the algorithm starts with a set of trees
1998) work according to similar strategies: conconsisting of single nodes, and then expands a given
structing optimal parametens that maximize the tree of size(n—1) by attaching a new node to it to
smallest margirbetween positive and negative ex-obtain trees of size.. However, it would be inef-
amples. The critical difference is the definition Ofﬁcient to expand nodes at arbitrary positions of the
margin or the way they regularize the vecter tree, as duplicated enumeration is inevitable. The
(RatSCh, 2001) shows that the iterative feature Selegfgorithm, rightmost extension’ avoids such dup“-
tion performed in boosting asymptotically realizesated enumerations by restricting the position of at-
an /;-norm ||w||; regularization. In contrast, it is tachment. Here we give the definition of rightmost

well known that SVMs are reformulated as &8 extension to describe this restriction in detail.
norm||w/||z regularized algorithm. o))

The relationship between two regularizations ha@eﬂ_n'tIon 3 Rightmost Extension (Abe et al., 2002;
been studied in the machine learning communit)%ak" 2002/) _
(Perkins et al., 2003) reported thiatnorm should €t andt’ be labeled ordered trees. We/stéyg a
be chosen for a problem where most given featurd@ntmost extension af if and only if¢ andt” satisty
areirrelevant On the other handy-norm should be 1€ f/o_llowmg three conditions: _
chosen when most given features seevant An (1) U IS created by adding a single node #o(i.e.,

i : tctand|t|+1=|t'])
advantage of thé -norm regularizer is that it often | : o)
leads to sparse solutions where mogtare exactly (2) A node is added to a node existing on the unique

0. The features assigned zero weight are thought P@th from the root to the rightmost leaf (rightmost-

beirrelevantfeatures as regards classifications. path) int. _ _ .
The [1-norm regularization is useful for our set—(3) Anode is added as the rightmost sibling.

ting, since most features (subtrees) are redundant

and irrelevant, and these redundant features are aensider Figure 2, which illustrates example ttee

tomatically eliminated. with labels drawn from the sef = {a,b,c}. For

the sake of convenience, each node in this figure has

its original number (depth-first enumeration). The

In each boosting iteration, we have to solve the foltightmost-path of the treeis (a(c(b))), and it oc-

lowing optimization problem: curs at positiong, 4 and6 respectively. The set of

rightmost extended trees is then enumerated by sim-

s ply adding a single node to a node on the rightmost
path. Since there are three nodes on the rightmost

where gain(ty) = ‘\/ W=y Wk_‘- path and the size of the label set i3 |£]), a to-

3.4 Sparse feature representation

4 Efficient Computation

k = argmaxgain(ty,),
k=1,..

rightmost extension t’ ° Size Constraint
Larger trees are usually less effective to discrimi-
nation. Thus, we give a size thresheldand use
subtrees whose size is no greater thaithis con-
straint is easily realized by controlling the right-
most extension according to the size of the trees.
e Frequency constraint
The frequency-based cut-off has been widely used
in feature selections. We employ a frequency
thresholdf, and use subtrees seen on at least one
tal of 9 trees are enumerated from the original treeparse for at leasf different sentences. Note that
t. By repeating the rightmost-extension process rea similar branch-and-bound technique can also be
cursively, we can create a search space in which atpplied to the cut-off. When we find that the fre-
trees drawn from the sét are enumerated. guency of atreeis no greater thayf, we can safely
prune the space spanned fréras the frequencies
of any super-treeg D ¢t are also no greater thah
Rightmost extension defines a canonical seaiglpseydo iterations
space in which we can enumerate all subtrees fromfter several 5- or 10-iterations of boosting, we al-
a given set of trees. Here we consider an Uppefernately perform 100- or 300 pseudo iterations, in
bound of the gain that allows subspace pruning inyhich the optimal feature (subtree) is selected from
this canonical search space. The following obserthe cache that maintains the features explored in the
vation provides a convenient way of computing anprevious iterations. The idea is based on our ob-
upper bound of thgain(iy) for any super-treg,s servation that a feature in the cache tends to be re-
of 2. used as the number of boosting iterations increases.
Observation 1 Upper bound of thgain (i) Pseudo iterations converge very fast, and help the
Z?{S?y ti 2 t, the gain of 7 is bounded by o and-bound algorithm find new features that
are not in the cache.

gain(ty) = /W —\/W,

-

L={a,b,c}

Figure 2: Rightmost extension

4.2 Pruning

5 Experiments

< VWA W :

s max(y/W, w) 5.1 Parsing Wall Street Journal Text

< max(y Wi W) = (i), In our experiments, we used the same data set that
since ty Dt = Wy < Wy, be {+1,-1}. used in (Collins, 2000). Sections 2-21 of the Penn

We can efficiently prune the search space spanngﬂeebank were used as training daj[a', and section
by the rightmost extension using the upper bound was used as test data. The training data con-

gain u(t). During the traverse of the subtree IatticetainS about 40,000 sentences, each of which has an

built by the recursive process of rightmost extensiorf/¢29¢€ of 27 distinct parses. Of the 40,000 train-

we always maintain the temporally suboptimal gairllng septencis, the Erst 36’0?0 s_ehntencis were _used
7 of all the previously calculated gains. ft) < 7, _to perform the RankBoost algorithm. The remain-
the gain of any super-trgé D ¢ is no greater than, N9 4,000 sentences were used as development data.

and therefore we can safely prune the search spa delg _Of (Collins, 1999) was used to parse both
spanned from the subtreeln contrast, ifu(t) > 7, the training and test data.

we cannot prune this space, since there might be a 10 captur_e the lexical information of the parse
super-tree’ O ¢ such thaain(t') > 7. trees, we did not use a standard CFG tree but a

lexicalized-CFG tree where each non-terminal node
4.3 Ad-hoc techniques has an extra lexical node labeled with the head word
In real applications, we also employ the f0||0WingOf the constituent. Figure 3 shows an example of the

TOP MODEL < 40 Words (2245 sentences)

é [R | LP [CBs[0CBs[2CBs
e CO99 [88.5%)]88.7%] 0.92]66.7%| 87.1%
(saw) /N& VP CHOO |90.1%] 90.1%| 0.74| 70.1%| 89.6%
— = T COO00 |90.1%] 90.4%| 0.74| 70.3%| 89.6%
() PRP(saw) VBD NP CO02 |89.1%|89.4%) 0.85| 69.3%) 88.2%
| saw (gir) DT NN Boosting| 89.9%| 90.1%| 0.77| 70.5%] 89.4%

(,'31 iIrI MODEL| < 100 Words (2416 sentences)

9 [R | LP |CBs[0CBs|[2CBs
Figure 3: Lexicalized CFG tree for WSJ parsing CO99 |88.1%)88.3%) 1.06| 64.0%]| 85.1%
head word, e.g., (saw), is put as a leftmost constituent CHOO | 89.6%] 89.5% 0.88|67.6%] 87.7%
COO00 |89.6%|89.9%| 0.87|68.3%| 87.7%
: } COO02 |88.6%] 88.9%) 0.99| 66.5%| 86.3%
size parameterand frequency parametgmere ex Boosting| 89.3%)| 89.6%| 0.90| 67.9%)| 87.5%

perimentally set a6 and 10, respectively. As the .
data set is very large, it is difficult to employ the ex-Table 1: Results for section 23 of the WSJ Treebank

periments with more unrestricted parameters LR/LP = labeled recall/precision. CBs is the average number

Table 1 lists results on test data for the Model2 O?f cross brackets per sentence. 0 CBs, and 2CBs are the per-
(Collins, 1999), for several previous studies, and fofentage of sentences with 0 gr2 crossing brackets, respec-
our best model. We achieve recall and precision ¢¥€!- €OL99 = Model 2 of (Collins, 1999). CHOO = (Char-
89.3/9689.6% and 89.9%/90.1% for sentences witHf2k 2000), CO00=(Collins, 2000). CO02=(Collins and Duffy,
< 100 words and< 40 words, respectively. The 2002

method shows a 1.2% absolute improvement in aYjterbi search and backward A* search. Note that
erage precision and recall (from 88.2% to 89.4% foghis search algorithm yields optimatbest results
sentences< 100 words), a 10.1% relative reduc- jn terms of the CRFs score. Each sentence has at
tion in error. (CO”inS, 2000) achieved 896%/8990/(‘rnost 20 distinct parses. The log probability from
recall and precision for the same datasets (sefhe CRFs shallow parser was incorporated into the
tences< 100 words) using boosting and manu-reranking. Following (Collins, 2000), the training
ally constructed features. (Charniak, 2000) extendget was split into 5 portions, and the CRFs shallow
PCFG and achieves similar performance to (Collingarser was trained on 4/5 of the data, then used to
2000). The tree kernel method of (Collins ancjecode the remaining 1/5. The outputs of the base
Duffy, 2002) uses the all-subtrees representation a'ﬁﬁrser, which consist of base phrases, were con-
achieves 88.6%/88.9% recall and precision, whic{erted into right-branching trees by assuming that
are slightly worse than the results obtained with ougyo adjacent base phrases are in a parent-child re-
model. (Bod, 2001) also uses the all-subtrees repregionship. Figure 4 shows an example of the tree
sentation with a very different parameter estimatiofyr shallow parsing task. We also put two virtual
method, and realizes 90.06%/90.08% recall and preindes, left/right boundaries, to capture local transi-
cision for sentences of 40 words. tions. The size parameternd frequency parameter

f were experimentally set &tand5, respectively.

Table 2 lists results on test data for the baseline
We used the same data set as the CoNLL 20Q0RFs parser, for several previous studies, and for
shared task (Tjong Kim Sang and Buchholz, 2000bur best model. Our model achieves a 94.12 F-
Sections 15-18 of the Penn Treebank were used agasure, and outperforms the baseline CRFs parser
training data, and section 20 was used as test dataand the SVMs parser (Kudo and Matsumoto, 2001).

As a baseline model, we used a shallow pars€Zhang et al., 2002) reported a higher F-measure
based on Conditional Random Fields (CRFs), verwith a generalized winnow using additional linguis-
similar to that described in (Sha and Pereira, 2003)ic features. The accuracy of our model is very simi-
CRFs have shown remarkable results in a numbdéar to that of (Zhang et al., 2002) without using such
of tagging and chunking tasks in NLR:-best out- additional features. Table 3 shows the results for our
puts were obtained by a combination of forwardest model per chunk type.

5.2 Shallow Parsing

TOP Precision| Recall | Fs-;
| ADJP 80.35% | 73.41%| 76.72

//N»P\ ADVP | 83.88% | 82.33%| 83.10
PRP VP CONJP| 42.86% | 66.67%| 52.17
(L)/I'\(R) VBD/\NP INTJ 50.00% | 50.00% | 50.00
-y P LST 0.00% | 0.00% | 0.00

() saw (R) DT NN EOS NP 94.45% | 94.36%| 94.41
(L)/\agim) PP 97.24% | 98.07%| 97.65

PRT 76.92% | 75.47%| 76.19
SBAR | 90.70% | 89.35%/| 90.02

Figure 4: Tree representation for shallow parsing W 93-953/0 94-722/0 94.33
Represented in a right-branching tree with two virtual nodes Overall | 94.11% | 94.13%)| 94.12
Table 3: Results of shallow parsing per chunk type

MODEL Fg—y .
CRFs (baseline) 93.76 tree (SBAR(IN(for))(NP(VP(TO)))) has a large positive

8 SVMs-voting(Kudo and Matsumoto, 200193.91 weight, while the tregSBAR((IN(for))(NP(0)))) has a

RW + linguistic feature{Zhang et al., 2002)| 94.17 negative weight. The improvement on subordinate
Boosting (our model) 94.12) phrases is considerable. We achieve 19% of the rel-

- ative error reduction for subordinate phrase (from
Table 2: Results of shallow parsing 87.68 t0 90.02 in F-measure)

Fs—1 is the harmonic mean of precision and recall.

The testing speed of our model is much higher
than that of other models. The speeds of rerank-
ing for WSJ parsing and shallow parsing are 0.055
6.1 Interpretablity and Efficiency sec./sent. and 0.042 sec./sent. respectively, which

) are fast enough for real applicatiohs
The numbers of active (non-zero) features selectecg g PP

by boosting are around 8,000 and 3,000 in the W2 Relationship to previous work

parsing and shallow parsing, respectively. Although K | the all-subt ati i
almost all the subtrees are used as feature cana—ljr-ee ernel uses the all-subtrees representation no

dates, boosting selects a small and highly releval f(plicitly but implicitly by reducing the problem to

subset of features. When we explicitly enumerat e calculation of the inner-products of two trees.

the subtrees used in tree kernel, the number of a he implicit calculation yields a practical computa-

tive features might amount to millions or more. Notet'on n tre_unmg. However, in testing, ke_rnel meth-

that the accuracies under such sparse feature spaggg require a number of kerne.I evaluat|0n§, WhICh
are still comparable to those obtained with tree kefr® too heavy to allow us to reallge real applications.
nel. This result supports our first intuition that WeMoreover, tree kemel needs to incorporate a decay

do not always need all the subtrees to construct ﬂ{gctor to_downwe_lght the contrlbutl_on of larger sub-
parameters, trees. It is non-trivial to set the optimal decay factor
as the accuracies are sensitive to its selection.

The sparse feature representations are useful i Simil del. d _ q ing (DOP
practice as they allow us to analyze what kinds of imilar to our model, data oriented parsing ()

features are relevant. Table 4 shows examples g}ethods_ (Bod, 1_998) dea_l with the all-subtrees rep-
active features along with their weights,. In the rgsentatlon explicitly. 'Slnce the exact computa-
shallow parsing tasks, subordinate phrases (SBA[QS)n 9f sqores for DOP is NP-complete, Several_ ap-
are difficult to analyze without seeing long depenprox!matlons are emp!oyed to perform an efficient
dencies. Subordinate phrases usually precede a sBA->""9: The critical difference between our model
tence (NP and VP). However, Markov-based shafNd DOP is that our model leads to an extremely

low parsers, such as MEMM or CRFs, cannot Calos_parse solution and automatically eliminates redun-

ture such a long dependency. Our model automaq-ant subtrees. With the DOP methods, (Bod, 2001)

ically selects useful subtrees to obtain an improveQISO employs constraints (e.g., depth of subirees) to
ment on subordinate phrases. Itis interesting that the Twe ran these tests on a Linux PC with Pentium 4 3.2 Ghz.

6 Discussion

WSJ parsing Rens Bod. 2001. What is the minimal set of fragments that

w active trees that contain the walid” achieves maximal parse accuracy? Pioc. of ACL, pages
0.3864| (VP(NP(NNS(plants)))(PP(in))) 66-73.
0.3326 (VP(VP(PP)(PP(in)))(VP)) Eugene Charniak. 2000. A maximum-entropy-inspired parser.
0.2196| (NP(VP(VP(PP)(PP(in))))) I Proc. of NAACL pages 132—139. PY-INSPE parser

0.1748| (S(NP(NNP))(PP(in)(NP)))
Michael Collins and Nigel Duffy. 2002. New ranking algo-

1']:'217 pp in(NP(NP(effect rithms for parsing and tagging: Kernels over discrete struc-
-1.1634 EVngI)e(Id)(l(DP(I-S’P))(P)F)’)()In))) tures, and the voted perceptron.Rroc. of ACL
-1.3574 (NP(PP(in)(NP(NN(way))))) Michael Collins. 1999. Head-Driven Statistical Models for
-1.8030 (NP(PP(in)(NP(trading)(JJ)))) Natural Language Parsing Ph.D. thesis, University of
shallow parsing Pennsylvania.

w active trees that contain the phrdS8AR” Michael Collins. 2000. Discriminative reranking for natural
1.4500[(SBAR(IN(for))(NP(VP(TO)))) language parsing. IRroc. of ICML, pages 175-182.
0.6177 (VP(SBAR(NP(YBD))) Michael Collins. 2002. Ranking algorithms for named-entity
0.6173| (SBAR(NP(VP(*)))) extraction: Boosting and the voted perceptron.Phac. of
0.5644 (VP(SBAR(NP(VP(3J))))) ACL, pages 489-496.
-0 O [Yoav Freund, Raj D. lyer, Robert E. Schapire, and Yoram
ggg)gi ggﬁgg\ll\léf(gg%NP(O))) Singer. 2003. An efficient b(_)osting algorithmfor combining
-1.0695 (ADVP(NP(SBAR(NP(VP))))) gg%f.erences\]ournal of Machine Learning Researeh933—

11,1699 (SBAR(NP(NN)(NP)))
. . Taku Kudo and Yuji Matsumoto. 2001. Chunking with support
Table 4: Examples of active features (subtrees) vector machines. IRroc. of NAACL pages 192—199.

All trees are represented in S-expression. In the shallow parsirjlg . .
aku Kudo and Yuji Matsumoto. 2004. A boosting algo-

task,O is a special phrase that means “out of chunk”. rithm for classification of semi-structured text. Rioc. of
: EMNLP, pages 301-308.
select relevant subtrees and achieves the best results pag

for WSJ parsing. However. these techniques are ng'lmon Perkins, Kevin Lacker, and James Thiler. 2003. Graft-
b d h larizati ' f K f d ing: Fast, incremental feature selection by gradient descent
ased on the regularization framework tocused 0N i, fynction space.Journal of Machine Learning Research

this paper and do not always eliminate all the re- 3:1333-1356.
dundant _SL_JbtreeS- Even using th_e methf)ds of (Bogunnar. Ritsch. 2001 Robust Boosting via Convex Optimiza-
2001), millions of subtrees are still exploited, which tion. Ph.D. thesis, Department of Computer Science, Uni-
leads to inefficiency in real problems. versity of Potsdam.

) Robert E. Schapire, Yoav Freund, Peter Bartlett, and Wee Sun
7 Conclusions Lee. 1997. Boosting the margin: a new explanation for the

effectiveness of voting methods. PRroc. of ICML, pages

In this paper, we presented a new application of 322-330.

boosting for parse reranking, in which all subtreegej sha and Fernando Pereira. 2003. Shallow parsing with
are potentially used as distinct features. Although conditional random fields. IRroc. of HLT-NAACL pages

this set-up greatly increases the feature space, the?*3-220:
l1-norm regularization performed by boosting seErik F. Tjong Kim Sang and Sabine Buchholz. 2000. Introduc-

lects a compact and relevant feature set. Our modelg‘f”(‘:g,’\lihl_e_zco%g;'Hg(i(i?__zgggggzsﬁgilégk'”9' Rroc.
achieved a comparable or even better accuracy than
kernel methods even with an extremely small num_/IadimirN. Vapnik. 1998.Statistical Learning TheoryWiley-
Interscience.
ber of features (subtrees).
Guizhen Yang. 2004. The complexity of mining maximal fre-

guent itemsets and maximal frequent patterns.Pioc. of
References SIGKDD.

Keniji Abe, Shinji Kawasoe, Tatsuya Asai, Hiroki Arimura, and : - o ;
Setsuo Arikawa. 2002. Optimized substructure discover)'yI ofl;?énsrpt?gpzrglél.Ofg(l)ékgfgcplzgtel)é r;wllrllgg frequent trees in a
for semi-structured data. Proc. of PKDD pages 1-14. ' ’ '

) Tong Zhang, Fred Damerau, and David Johnson. 2002. Text

Rens Bod. 19988eyond Grammar: An Experience Based The- chynking based on a generalization of winnadeurnal of
ory of Language CSLI Publications/Cambridge University nachine Learning Research:615-637.

Press.

