証明 公式 2.3 を確かめてみましょう. 式 (2.38) の積分は μ_1 の場所によりませんので *6 .

$$\begin{pmatrix} \mathbf{x}_1 \\ \mathbf{x}_2 \end{pmatrix} \sim \mathcal{N} \begin{pmatrix} \mathbf{0} \\ \mathbf{0} \end{pmatrix}, \begin{pmatrix} \mathbf{\Sigma}_{11} & \mathbf{\Sigma}_{12} \\ \mathbf{\Sigma}_{21} & \mathbf{\Sigma}_{22} \end{pmatrix}$$
 (2.39)

すなわち,

$$\mathbf{\Lambda} = \begin{pmatrix} \mathbf{\Lambda}_{11} & \mathbf{\Lambda}_{12} \\ \mathbf{\Lambda}_{21} & \mathbf{\Lambda}_{22} \end{pmatrix} = \begin{pmatrix} \mathbf{\Sigma}_{11} & \mathbf{\Sigma}_{12} \\ \mathbf{\Sigma}_{21} & \mathbf{\Sigma}_{22} \end{pmatrix}^{-1}$$
(2.40)

と定義すれば

$$p\begin{pmatrix} \mathbf{x}_1 \\ \mathbf{x}_2 \end{pmatrix} \propto \exp\left(-\frac{1}{2} \underbrace{\left\{\begin{pmatrix} \mathbf{x}_1 \\ \mathbf{x}_2 \end{pmatrix}^T \begin{pmatrix} \mathbf{\Lambda}_{11} & \mathbf{\Lambda}_{12} \\ \mathbf{\Lambda}_{21} & \mathbf{\Lambda}_{22} \end{pmatrix} \begin{pmatrix} \mathbf{x}_1 \\ \mathbf{x}_2 \end{pmatrix}\right\}}_{I}$$
(2.41)

の場合について証明すれば十分です.このとき $\int p(\mathbf{x}_1,\mathbf{x}_2)d\mathbf{x}_2$ を計算すればいいのですが,基本的な戦略は,積分したいベクトル \mathbf{x}_2 について平方完成することです.式 (2.41) の右辺を $\exp(-\frac{1}{2}L)$ とおくと, $\mathbf{\Lambda}^T=\mathbf{\Lambda}$ なので

$$L = \mathbf{x}_1^T \mathbf{\Lambda}_{11} \mathbf{x}_1 + \mathbf{x}_1^T \mathbf{\Lambda}_{12} \mathbf{x}_2 + \mathbf{x}_2^T \mathbf{\Lambda}_{21} \mathbf{x}_1 + \mathbf{x}_2^T \mathbf{\Lambda}_{22} \mathbf{x}_2$$
 (2.42)

$$= \mathbf{x}_1^T \mathbf{\Lambda}_{11} \mathbf{x}_1 + 2 \mathbf{x}_2^T \mathbf{\Lambda}_{21} \mathbf{x}_1 + \mathbf{x}_2^T \mathbf{\Lambda}_{22} \mathbf{x}_2$$
 (2.43)

と表すことができます.

ここで一般に、対称行列 Λ について

$$(\mathbf{x} - \boldsymbol{\mu})^T \boldsymbol{\Lambda} (\mathbf{x} - \boldsymbol{\mu}) = \mathbf{x}^T \boldsymbol{\Lambda} \mathbf{x} - \mathbf{x}^T \boldsymbol{\Lambda} \boldsymbol{\mu} - \boldsymbol{\mu}^T \boldsymbol{\Lambda} \mathbf{x} + \boldsymbol{\mu}^T \boldsymbol{\Lambda} \boldsymbol{\mu}$$
(2.44)

$$= \mathbf{x}^T \mathbf{\Lambda} \mathbf{x} - 2\mathbf{x}^T \mathbf{\Lambda} \boldsymbol{\mu} + \boldsymbol{\mu}^T \mathbf{\Lambda} \boldsymbol{\mu}$$
 (2.45)

が成り立つことに注意しましょう. 式 (2.45) では, $(\mu^T \Lambda) \mathbf{x} = \mathbf{x}^T (\mu^T \Lambda)^T = \mathbf{x}^T \Lambda \mu$ であることを用いました. よって L は, 次の形に平方完成することができます.

$$L = (\mathbf{x}_2 + \boldsymbol{\Lambda}_{22}^{-1} \boldsymbol{\Lambda}_{21} \mathbf{x}_1)^T \boldsymbol{\Lambda}_{22} (\mathbf{x}_2 + \cdots) - \mathbf{x}_1^T \boldsymbol{\Lambda}_{21}^T \boldsymbol{\Lambda}_{22}^{-1} \boldsymbol{\Lambda}_{21} \mathbf{x}_1 + \mathbf{x}_1^T \boldsymbol{\Lambda}_{11} \mathbf{x}_1$$
(2.46)

式 (2.46) の第 1 項は、多変量がウス分布の正規化定数を求める式 (2.24) $\stackrel{\checkmark}{\text{E}}$

^{*6} 数学的には、 $N(\mu, \overline{\Sigma}) = \mu + \mathcal{N}(\mathbf{0}, \Sigma)$ なので、 $\int \mathcal{N}(\mathbf{x}|\mu, \Sigma) d\mathbf{x} = \mu + \int \mathcal{N}(\mathbf{x}|\mathbf{0}, \Sigma) d\mathbf{x}$ となるためです。

同じ形をしており、 \mathbf{x}_2 について積分すると真ん中の $\mathbf{\Lambda}_{22}$ だけに依存する定数となることに注意しましょう. よって、

$$p(\mathbf{x}_1) = \int p(\mathbf{x}_1, \mathbf{x}_2) d\mathbf{x}_2 = \int \exp\left(-\frac{1}{2}L\right) d\mathbf{x}_2$$
 (2.47)

$$= (\stackrel{\sim}{\mathbb{Z}} \underbrace{\left\{ -\mathbf{x}_1^T \mathbf{\Lambda}_{21}^T \mathbf{\Lambda}_{22}^{-1} \mathbf{\Lambda}_{21} \mathbf{x}_1 + \mathbf{x}_1^T \mathbf{\Lambda}_{11} \mathbf{x}_1 \right\}}$$
(2.48)

$$\propto \exp\left(-\frac{1}{2}\mathbf{x}_1^T(\mathbf{\Lambda}_{11} - \mathbf{\Lambda}_{21}^T\mathbf{\Lambda}_{22}^{-1}\mathbf{\Lambda}_{21})\mathbf{x}_1\right)$$
(2.49)

となります. これを公式 2.2 と見比べれば, \mathbf{x}_1 の分布は, $\boldsymbol{\Lambda}$ で表せば

$$p(\mathbf{x}_1) = \mathcal{N}(\mathbf{0}, (\mathbf{\Lambda}_{11} - \mathbf{\Lambda}_{21}^T \mathbf{\Lambda}_{22}^{-1} \mathbf{\Lambda}_{21})^{-1})$$
 (2.50)

となることがわかります.

最後に、式 (2.50) を Σ で表してみましょう. Λ の定義は式 (2.40) でしたから、付録「行列の分割と逆行列」の式 (1) から、

$$(\mathbf{\Lambda}_{11} - \mathbf{\Lambda}_{21}^T \mathbf{\Lambda}_{22}^{-1} \mathbf{\Lambda}_{21})^{-1} = \mathbf{\Sigma}_{11}$$
 (2.51)

が成り立っています. よって, 式 (2.50) を Σ で表せば

$$p(\mathbf{x}_1) = \mathcal{N}(\mathbf{0}, \mathbf{\Sigma}_{11}) \tag{2.52}$$

となります. □

2.3.4 多変量ガウス分布の条件つき分布

ベクトル \mathbf{x} が多変量ガウス分布に従うとき、 \mathbf{x} の一部の次元を固定したときの分布、すなわちある次元で「切った」ときの切り口の分布も、やはりガウス分布になります。 たとえば図 2.7 のように、2 次元のガウス分布 $p(x_1,x_2)$ において、 $x_1=c$ (定数) で切ったときの x_2 の分布 $p(x_2|x_1)$ は、値 c によって形の異なるガウス分布になります。

このことを、式で表してみましょう. D次元のガウス分布に従うベクトル

$$\mathbf{x} \sim \mathcal{N}(\boldsymbol{\mu}, \boldsymbol{\Sigma})$$
 (2.53)

を, 前節の式 (2.37) と同様に \mathbf{x}_1 , \mathbf{x}_2 と分けて表すことにします。このとき, \mathbf{x}_1 を固定したときの \mathbf{x}_2 の分布,すなわち同時分布 $p(\mathbf{x}_1,\mathbf{x}_2)$ を \mathbf{x}_1 で切っ

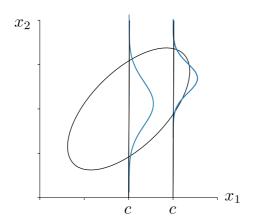


図 2.7 多変量ガウス分布の条件つき分布を表した図。 楕円で示した 2 次元のガウス分布 $p(x_1,x_2)$ において、 $x_1=c$ を固定したときの分布 $p(x_2|x_1)$ は、c によって異なる平均および分散 のガウス分布となり、式 (2.54) で与えられます。

たときの \mathbf{x}_2 の条件つき分布は

公式 2.4 (多変量ガウス分布の条件つき分布)

$$p(\mathbf{x}_{2}|\mathbf{x}_{1}) = \mathcal{N}\left(\boldsymbol{\mu}_{2} + \boldsymbol{\Sigma}_{21}\boldsymbol{\Sigma}_{11}^{-1}(\mathbf{x}_{1} - \boldsymbol{\mu}_{1}), \ \boldsymbol{\Sigma}_{22} - \boldsymbol{\Sigma}_{21}\boldsymbol{\Sigma}_{11}^{-1}\boldsymbol{\Sigma}_{12}\right)$$
(2.54)

となります。若干計算が面倒ですが、この公式は前節と同様に条件部の \mathbf{x}_1 について平方完成することで、以下のような計算から得られます。 \mathbf{x}^7

証明 条件つき確率 $p(\mathbf{x}_2|\mathbf{x}_1)$ は、 \mathbf{x}_2 の関数としては同時確率 $p(\mathbf{x}_1,\mathbf{x}_2)$ に比例していますので、

$$p(\mathbf{x}_2|\mathbf{x}_1) \propto p(\mathbf{x}_1, \mathbf{x}_2) \tag{2.55}$$

$$\propto \exp\left(-\frac{1}{2}\left\{\begin{pmatrix} \mathbf{x}_1 - \boldsymbol{\mu}_1 \\ \mathbf{x}_2 - \boldsymbol{\mu}_2 \end{pmatrix}^T \begin{pmatrix} \boldsymbol{\Lambda}_{11} & \boldsymbol{\Lambda}_{12} \\ \boldsymbol{\Lambda}_{21} & \boldsymbol{\Lambda}_{22} \end{pmatrix} \begin{pmatrix} \mathbf{x}_1 - \boldsymbol{\mu}_1 \\ \mathbf{x}_2 - \boldsymbol{\mu}_2 \end{pmatrix}\right\}\right)$$
(2.56)

^{*7 [59]} の付録 A11.3 にも, 別の興味深い導出が載っています.

$$= \exp\left(-\frac{1}{2}\left\{ (\mathbf{x}_{1} - \boldsymbol{\mu}_{1})^{T} \boldsymbol{\Lambda}_{11} (\mathbf{x}_{1} - \boldsymbol{\mu}_{1}) + (\mathbf{x}_{1} - \boldsymbol{\mu}_{1})^{T} \boldsymbol{\Lambda}_{12} (\mathbf{x}_{2} - \boldsymbol{\mu}_{2}) + (\mathbf{x}_{2} - \boldsymbol{\mu}_{2})^{T} \boldsymbol{\Lambda}_{21} (\mathbf{x}_{1} - \boldsymbol{\mu}_{1}) + (\mathbf{x}_{2} - \boldsymbol{\mu}_{2})^{T} \boldsymbol{\Lambda}_{22} (\mathbf{x}_{2} - \boldsymbol{\mu}_{2}) \right\} \right)$$

$$\propto \exp\left(-\frac{1}{2}\left\{ (\mathbf{x}_{2} - \boldsymbol{\mu}_{2})^{T} \boldsymbol{\Lambda}_{22} (\mathbf{x}_{2} - \boldsymbol{\mu}_{2}) + 2(\mathbf{x}_{1} - \boldsymbol{\mu}_{1})^{T} \boldsymbol{\Lambda}_{21} (\mathbf{x}_{2} - \boldsymbol{\mu}_{2}) \right\} \right)$$

$$\propto \exp\left(-\frac{1}{2}\left\{ \mathbf{x}_{2}^{T} \boldsymbol{\Lambda}_{22} \mathbf{x}_{2} - \mathbf{x}_{2}^{T} \boldsymbol{\Lambda}_{22} \boldsymbol{\mu}_{2} - \boldsymbol{\mu}_{2}^{T} \boldsymbol{\Lambda}_{22} \mathbf{x}_{2} + 2(\mathbf{x}_{1} - \boldsymbol{\mu}_{1})^{T} \boldsymbol{\Lambda}_{21} \mathbf{x}_{2} \right\} \right)$$

$$\propto \exp\left(-\frac{1}{2}\left\{ (\mathbf{x}_{2}^{T} \boldsymbol{\Lambda}_{22} \mathbf{x}_{2} - 2\mathbf{x}_{2}^{T} (\boldsymbol{\Lambda}_{22} \boldsymbol{\mu}_{2} - \boldsymbol{\Lambda}_{21} (\mathbf{x}_{1} - \boldsymbol{\mu}_{1})) \right\} \right)$$

$$\propto \exp\left(-\frac{1}{2}\left\{ (\mathbf{x}_{2} - \boldsymbol{\Lambda}_{22}^{-1} (\boldsymbol{\Lambda}_{22} \boldsymbol{\mu}_{2} - \boldsymbol{\Lambda}_{21} (\mathbf{x}_{1} - \boldsymbol{\mu}_{1})) \right\}^{T} \boldsymbol{\Lambda}_{22} (\mathbf{x}_{2} - \cdots) \right\} \right)$$

$$\geq \mathbb{E} \tilde{\pi} \tilde{\pi} \tilde{\pi} \tilde{\mathbf{x}} \tilde{\mathbf{x}$$

$$p(\mathbf{x}_2|\mathbf{x}_1) \sim \mathcal{N}(\mathbf{\Lambda}_{22}^{-1}(\mathbf{\Lambda}_{22}\boldsymbol{\mu}_2 - \mathbf{\Lambda}_{21}(\mathbf{x}_1 - \boldsymbol{\mu}_1)), \mathbf{\Lambda}_{22}^{-1})$$
 (2.58)

$$= \mathcal{N}(\boldsymbol{\mu}_2 - \boldsymbol{\Lambda}_{22}^{-1} \boldsymbol{\Lambda}_{21}(\mathbf{x}_1 - \boldsymbol{\mu}_1), \boldsymbol{\Lambda}_{22}^{-1})$$
 (2.59)

となることがわかります.

後は、上を Σ を使って表すだけです。 $\Lambda=\Sigma^{-1}$ でしたから、付録「行列の分割と逆行列」の式 (2) より、 $\mathbf{M}=(\Sigma_{22}-\Sigma_{21}\Sigma_{11}^{-1}\Sigma_{21})^{-1}$ とおいて

$$\begin{pmatrix} \mathbf{\Lambda}_{11} & \mathbf{\Lambda}_{12} \\ \mathbf{\Lambda}_{21} & \mathbf{\Lambda}_{22} \end{pmatrix} = \begin{pmatrix} \mathbf{\Sigma}_{11} & \mathbf{\Sigma}_{12} \\ \mathbf{\Sigma}_{21} & \mathbf{\Sigma}_{22} \end{pmatrix}^{-1}$$
(2.60)

$$= \begin{pmatrix} \dots & \dots \\ -\mathbf{M}\boldsymbol{\Sigma}_{21}\boldsymbol{\Sigma}_{11}^{-1} & \mathbf{M} \end{pmatrix}$$
 (2.61)

が成り立っています. よって,

$$\Lambda_{22} = (\Sigma_{22} - \Sigma_{21} \Sigma_{11}^{-1} \Sigma_{21})^{-1}$$
 (2.62)

$$\Lambda_{22}^{-1}\Lambda_{21} = -\Sigma_{21}\Sigma_{11}^{-1} \tag{2.63}$$

ですから, 式 (2.59) は Σ を使って表せば,

$$p(\mathbf{x}_2|\mathbf{x}_1) = \mathcal{N}(\boldsymbol{\mu}_2 + \boldsymbol{\Sigma}_{21}\boldsymbol{\Sigma}_{11}^{-1}(\mathbf{x}_1 - \boldsymbol{\mu}_1), \boldsymbol{\Sigma}_{22} - \boldsymbol{\Sigma}_{21}\boldsymbol{\Sigma}_{11}^{-1}\boldsymbol{\Sigma}_{21})$$
 (2.64)

となります. □