Context as Filtering

Keywords: Language Modeling, Particle Filters, Change Point Analysis, LDA, Dirichlet Mixtures

Daichi Mochihashi

ATR, Spoken Language Communication Research Laboratories, Japan daichi.mochihashi@atr.jp

Yuji Matsumoto Computational Linguistics Laboratory, NAIST, Japan matsu@is.naist.jp

Abstract: For a prediction problem for high-dimensional discrete sequences, we propose a solution using online change point analysis by Particle Filters combined with probabilistic text models LDA and DM.

Language Modeling

Prediction from history on High-dimensional discrete data

Problem: How long context should we use?

- Hidden state of multinomial distributions may differ
- Beyond "Bag of Words" assumption

Aim of this research: Estimate next word from a long history by introducing a state space model in Multinomial space.

Mean Shift Model

Change Point Probabilities

By Bayes' Theorem.

p(change|observed) ∝ p(observed|change)p(change)

- p(observed|change=1)p(change=1) p(observed|change=0)p(change=0)
- Prior prediction $p(y, |\mathbf{a}) \times \rho$
- Posterior prediction $p(y_t | \boldsymbol{\alpha}, y_c ... y_{t-1}) \times (1-\rho)$
- $\left(\rho \times \alpha_{v} / \sum \alpha_{v}\right)$
- $\begin{cases} (1-\rho)\times(\alpha_{y_t}+n(y_t))/\sum_{x_t}(\alpha_{y_t}+n(y_t)) & n(y): \text{# of y in } Y_c\cdots Y_{t-1} \end{cases}$

Multinomial Particle Filter

■ Simultaneous Bernoulli trials → Multinomial Particle Filter

- Online estimate of ρ : Expectation of Beta posterior

 - $\langle \rho_i \rangle = \frac{\alpha + (\text{\# of change points thus far})}{\alpha + \beta + t 1} \quad \alpha, \beta$: hyperparameters
- Problem: Extremely high dimensionality of language (Semantic correlations between words)

LDA, Dirichlet Mixtures (DM) → MSM-LDA, MSM-DM

MSM-LDA Topic Subsimplex,

Topic

distribution

MSM-DM

 $W_1 | W_2$

High-dimensional word simplex to topic subsimplex (LDA)

MSM in Topic space

- Some loss of information
- Extend to other mixture models $- p(v \mid \mathbf{h}) = \sum_{i=1}^{M} p(v \mid \theta_i) \langle \theta_i \rangle_{\alpha(\mathbf{\theta} \mid \mathbf{h})}$
- $(q(\theta | \mathbf{h}): VB-EM \text{ on } \mathbf{h})$

Word Simplex $w_1 | w_2$ $|w_i|$

 W_i \mathbf{w}

↑ Change point (Unknown)

↑ Change points (Unknown)

Dirichlet Mixtures: Mixture of Polya distributions

(Sjolander et al. 1996; Yamamoto et al. 2005)

- w: Word
- · z : Latent variable for each document
- p : Unigram distribution (integrated out)
- α₁ ··· α_M: Dirichlet hyperparameters for p

$$p(D \mid \lambda, \alpha_1 \cdots \alpha_M) = \prod_{i=1}^{D} \sum_{m=1}^{M} \lambda_m \frac{\Gamma(\sum_{v} \alpha_{mv})}{\Gamma(\sum_{w} \alpha_{mv} + n_{iv})} \prod_{v} \frac{\Gamma(\alpha_{mv} + n_{iv})}{\Gamma(\alpha_{mv})}$$

As opposed to LDA: ✓ Unitopic

- n_{iv} : occurrences of word v in document i
- ✓ Can model whole word simplex
- ✓ Lower document perplexity than LDA
- "Cache" property of Polya distributions (Minka 2000)
- ✓ Number of parameters equal to LDA $(\lambda, \alpha_1 ... \alpha_M)$
- ✓ Dirichlet Process Extension is now under development

Experiments

- British National Corpus (wide coverage of topics)
- 11.032.233 words. Lexicon = 52.846 words
- Evaluation texts: 100 documents x 100 sentences
- Raw: Extract contiguous 100 sentences
- Slow~VeryFast: Randomly skip to sample 100 sentences (Slow: a little skip, Fast: large, VeryFast: very large)

Experimental Results

Example of actual text

Summary and Future Directions

- ✓ Introduced a MSM of natural language with LDA/DM
 - Online inference with a Particle Filter
- ✓ Multiple observations. Gibbs for a whole document (OK)
- ✓ How to estimate segmentation and LDA/DM parameters. simultaneously (without using a slow Gibbs)?