
Training Large Language Models to
Reason in a Continuous Latent Space

読む人: 持橋大地
統計数理研究所/国立国語研究所

最先端NLP 2025

Shibo Hao, et al. COLM 2025

どんな論文？
l 一言で言うと...「無言で思考するChain-of-

Thought (CoT)」
l デコードした言葉のかわりに、その直前の
潜在ベクトルを履歴として使う
– 通常のCoTより高性能
– 特定の言葉で深さ優先探索にならざるを
えない通常のCoTと違い、暗黙的に
幅優先探索で複数の解を探索できる

l Chain of Continuous Thought=COCONUT

問題意識
l 通常の言葉によるChain-of-Thoughtは、
– 思考ステップの可能性を1通りに絞ってしまう
– 言葉と実際の推論過程が違っていることがある

(Wang+ 2022, Turpin+ 2024)
– 思考と関係ない、流暢性だけのためのトークンが
多数ある一方で、一部に思考が必要な複雑なトークン
(例: “irreducibility”) があり、それらに同じ計算資源が
割り当てられる

l 脳科学の知見によると、人間が推論を行っている時は
言語野はほとんど活動していないことが多い

言語に制約されない思考を表現する必要がある

Coconutの学習データ (1)
l 学習データ: 通常のCoT用の学習データ
– Question文とAnswer文の間に、それを繋ぐ
中間的なCoTステップが文として与えられている

l 算数問題のGSM8kの例：

Appendix

A Datasets

A.1 Examples

We provide some examples of the questions and CoT solutions for the datasets used in our experiments.

GSM8k

Question = "John cuts his grass to 2 inches. It grows .5 inches per month. When it gets to 4

inches he cuts it back down to 2 inches. It cost $100 to get his grass cut. How much does he pay

per year?"

Steps = ["«4-2=2»", "«2/.5=4»", "«12/4=3»", "«100*3=300»"]

Answer = "300"

ProntoQA

Question = "Brimpuses are not luminous. Shumpuses are amenable. Each yumpus is a lorpus.

Gorpuses are shumpuses. Each zumpus is a grimpus. Gorpuses are rompuses. Dumpuses are

not floral. Lempuses are cold. Brimpuses are impuses. Every lorpus is floral. Every rompus

is transparent. Grimpuses are muffled. Rompuses are yumpuses. Rompuses are wumpuses.

Zumpuses are fast. Wumpuses are bitter. Every sterpus is orange. Each lorpus is a vumpus.

Yumpuses are feisty. Each yumpus is a lempus. Gorpuses are snowy. Zumpuses are gorpuses.

Every lorpus is a sterpus. Stella is a brimpus. Stella is a zumpus. True or false: Stella is not

floral."

Steps = ["Stella is a zumpus. Zumpuses are gorpuses.", "Stella is a gorpus. Gorpuses are

rompuses.", "Stella is a rompus. Rompuses are yumpuses.", "Stella is a yumpus. Each yumpus

is a lorpus.", "Stella is a lorpus. Every lorpus is floral.", "Stella is floral."]

Answer = "False"

ProsQA

Question = "Every shumpus is a rempus. Every shumpus is a yimpus. Every terpus is a fompus.

Every terpus is a gerpus. Every gerpus is a brimpus. Alex is a rempus. Every rorpus is a

scrompus. Every rorpus is a yimpus. Every terpus is a brimpus. Every brimpus is a lempus.

Tom is a terpus. Every shumpus is a timpus. Every yimpus is a boompus. Davis is a shumpus.

Every gerpus is a lorpus. Davis is a fompus. Every shumpus is a boompus. Every shumpus is a

rorpus. Every terpus is a lorpus. Every boompus is a timpus. Every fompus is a yerpus. Tom is

a dumpus. Every rempus is a rorpus. Is Tom a lempus or scrompus?"

Steps = ["Tom is a terpus.", "Every terpus is a brimpus.", "Every brimpus is a lempus."]

Answer = "Tom is a lempus."

A.2 Construction of ProsQA

To construct the dataset, we first compile a set of typical entity names, such as “Alex” and “Jack,” along
with fictional concept names like “lorpus” and “rorpus,” following the setting of ProntoQA (Saparov and He,
2022). Each problem is structured as a binary question: “Is [Entity] a [Concept A] or [Concept B]?” Assuming
[Concept A] is the correct answer, we build a directed acyclic graph (DAG) where each node represents an
entity or a concept. The graph is constructed such that a path exists from [Entity] to [Concept A] but not to
[Concept B].

Algorithm 1 describes the graph construction process. The DAG is incrementally built by adding nodes and
randomly connecting them with edges. To preserve the validity of the binary choice, with some probability, we

15

Coconutの学習データ (2)
l 論理問題のProsQAの例：

Appendix

A Datasets

A.1 Examples

We provide some examples of the questions and CoT solutions for the datasets used in our experiments.

GSM8k

Question = "John cuts his grass to 2 inches. It grows .5 inches per month. When it gets to 4

inches he cuts it back down to 2 inches. It cost $100 to get his grass cut. How much does he pay

per year?"

Steps = ["«4-2=2»", "«2/.5=4»", "«12/4=3»", "«100*3=300»"]

Answer = "300"

ProntoQA

Question = "Brimpuses are not luminous. Shumpuses are amenable. Each yumpus is a lorpus.

Gorpuses are shumpuses. Each zumpus is a grimpus. Gorpuses are rompuses. Dumpuses are

not floral. Lempuses are cold. Brimpuses are impuses. Every lorpus is floral. Every rompus

is transparent. Grimpuses are muffled. Rompuses are yumpuses. Rompuses are wumpuses.

Zumpuses are fast. Wumpuses are bitter. Every sterpus is orange. Each lorpus is a vumpus.

Yumpuses are feisty. Each yumpus is a lempus. Gorpuses are snowy. Zumpuses are gorpuses.

Every lorpus is a sterpus. Stella is a brimpus. Stella is a zumpus. True or false: Stella is not

floral."

Steps = ["Stella is a zumpus. Zumpuses are gorpuses.", "Stella is a gorpus. Gorpuses are

rompuses.", "Stella is a rompus. Rompuses are yumpuses.", "Stella is a yumpus. Each yumpus

is a lorpus.", "Stella is a lorpus. Every lorpus is floral.", "Stella is floral."]

Answer = "False"

ProsQA

Question = "Every shumpus is a rempus. Every shumpus is a yimpus. Every terpus is a fompus.

Every terpus is a gerpus. Every gerpus is a brimpus. Alex is a rempus. Every rorpus is a

scrompus. Every rorpus is a yimpus. Every terpus is a brimpus. Every brimpus is a lempus.

Tom is a terpus. Every shumpus is a timpus. Every yimpus is a boompus. Davis is a shumpus.

Every gerpus is a lorpus. Davis is a fompus. Every shumpus is a boompus. Every shumpus is a

rorpus. Every terpus is a lorpus. Every boompus is a timpus. Every fompus is a yerpus. Tom is

a dumpus. Every rempus is a rorpus. Is Tom a lempus or scrompus?"

Steps = ["Tom is a terpus.", "Every terpus is a brimpus.", "Every brimpus is a lempus."]

Answer = "Tom is a lempus."

A.2 Construction of ProsQA

To construct the dataset, we first compile a set of typical entity names, such as “Alex” and “Jack,” along
with fictional concept names like “lorpus” and “rorpus,” following the setting of ProntoQA (Saparov and He,
2022). Each problem is structured as a binary question: “Is [Entity] a [Concept A] or [Concept B]?” Assuming
[Concept A] is the correct answer, we build a directed acyclic graph (DAG) where each node represents an
entity or a concept. The graph is constructed such that a path exists from [Entity] to [Concept A] but not to
[Concept B].

Algorithm 1 describes the graph construction process. The DAG is incrementally built by adding nodes and
randomly connecting them with edges. To preserve the validity of the binary choice, with some probability, we

15

Coconutの学習 (1)
l 通常のChain-of-Thought

– [Step n]はそれぞれ自然言語の文で、この埋め込みを
次々と言語モデルにフィードバック

l COCONUT

– <bot>..<eot>で囲まれたトークンは、その文を与えた
直後の最終層のロジット (=“Continuous Thought”)

– 単語埋め込みのかわりに、これを言語モデルに
フィードバック

Figure 2 Training procedure of Chain of Continuous Thought (Coconut). Given training data with language reasoning
steps, at each training stage we integrate c additional continuous thoughts (c = 1 in this example), and remove one
language reasoning step. The cross-entropy loss is then used on the remaining tokens after continuous thoughts.

After the latent mode finishes (t � j), the input reverts to using the token embedding, i.e., Et =
[e(x1), e(x2), ..., e(xi), hi, hi+1, ..., hj�1, e(xj), ..., e(xt)]. It is worth noting that the last hidden states have
been processed by the final normalization layer, so they are not too large in magnitude. M(xt+1 | xt) is
not defined when i < t < j, since the latent thought is not intended to be mapped back to language space.
However, softmax(Wht) can still be calculated for probing purposes (see Section 4).

Training Procedure. In this work, we focus on a problem-solving setting where the model receives a question as
input and is expected to generate an answer through a reasoning process. We leverage language CoT data
to supervise continuous thought by implementing a multi-stage training curriculum inspired by Deng et al.
(2024). As shown in Figure 2, in the initial stage, the model is trained on regular CoT instances. In the
subsequent stages, at the k-th stage, the first k reasoning steps in the CoT are replaced with k ⇥ c continuous
thoughts1, where c is a hyperparameter controlling the number of latent thoughts replacing a single language
reasoning step. Following Deng et al. (2024), we also reset the optimizer state when training stages switch. We
insert <bot> and <eot> tokens (which are not counted towards c) to encapsulate the continuous thoughts.

During the training process, we optimize the normal negative log-likelihood loss, but mask the loss on questions
and latent thoughts. It is important to note that the objective does not encourage the continuous thought to
compress the removed language thought, but rather to facilitate the prediction of future reasoning. Therefore,
it’s possible for the LLM to learn more effective representations of reasoning steps compared to human
language.

Training Details. Our proposed continuous thoughts are fully differentiable and allow for back-propagation. We
perform n+ 1 forward passes when n latent thoughts are scheduled in the current training stage, computing
a new latent thought with each pass and finally conducting an additional forward pass to obtain a loss
on the remaining text sequence. While we can save any repetitive computing by using a KV cache, the
sequential nature of the multiple forward passes poses challenges for parallelism. Further optimizing the
training efficiency of Coconut remains an important direction for future research.

Inference Process. The inference process for Coconut is analogous to standard language model decoding,
except that in latent mode, we directly feed the last hidden state as the next input embedding. A challenge
lies in determining when to switch between latent and language modes. As we focus on the problem-solving
setting, we insert a <bot> token immediately following the question tokens. For <eot>, we consider two
potential strategies: a) train a binary classifier on latent thoughts to enable the model to autonomously
decide when to terminate the latent reasoning, or b) always pad the latent thoughts to a constant length. We
found that both approaches work comparably well. Therefore, we use the second option in our experiment for
simplicity, unless specified otherwise.

1If a language reasoning chain is shorter than k steps, then all the language thoughts will be removed.

4

Figure 2 Training procedure of Chain of Continuous Thought (Coconut). Given training data with language reasoning
steps, at each training stage we integrate c additional continuous thoughts (c = 1 in this example), and remove one
language reasoning step. The cross-entropy loss is then used on the remaining tokens after continuous thoughts.

After the latent mode finishes (t � j), the input reverts to using the token embedding, i.e., Et =
[e(x1), e(x2), ..., e(xi), hi, hi+1, ..., hj�1, e(xj), ..., e(xt)]. It is worth noting that the last hidden states have
been processed by the final normalization layer, so they are not too large in magnitude. M(xt+1 | xt) is
not defined when i < t < j, since the latent thought is not intended to be mapped back to language space.
However, softmax(Wht) can still be calculated for probing purposes (see Section 4).

Training Procedure. In this work, we focus on a problem-solving setting where the model receives a question as
input and is expected to generate an answer through a reasoning process. We leverage language CoT data
to supervise continuous thought by implementing a multi-stage training curriculum inspired by Deng et al.
(2024). As shown in Figure 2, in the initial stage, the model is trained on regular CoT instances. In the
subsequent stages, at the k-th stage, the first k reasoning steps in the CoT are replaced with k ⇥ c continuous
thoughts1, where c is a hyperparameter controlling the number of latent thoughts replacing a single language
reasoning step. Following Deng et al. (2024), we also reset the optimizer state when training stages switch. We
insert <bot> and <eot> tokens (which are not counted towards c) to encapsulate the continuous thoughts.

During the training process, we optimize the normal negative log-likelihood loss, but mask the loss on questions
and latent thoughts. It is important to note that the objective does not encourage the continuous thought to
compress the removed language thought, but rather to facilitate the prediction of future reasoning. Therefore,
it’s possible for the LLM to learn more effective representations of reasoning steps compared to human
language.

Training Details. Our proposed continuous thoughts are fully differentiable and allow for back-propagation. We
perform n+ 1 forward passes when n latent thoughts are scheduled in the current training stage, computing
a new latent thought with each pass and finally conducting an additional forward pass to obtain a loss
on the remaining text sequence. While we can save any repetitive computing by using a KV cache, the
sequential nature of the multiple forward passes poses challenges for parallelism. Further optimizing the
training efficiency of Coconut remains an important direction for future research.

Inference Process. The inference process for Coconut is analogous to standard language model decoding,
except that in latent mode, we directly feed the last hidden state as the next input embedding. A challenge
lies in determining when to switch between latent and language modes. As we focus on the problem-solving
setting, we insert a <bot> token immediately following the question tokens. For <eot>, we consider two
potential strategies: a) train a binary classifier on latent thoughts to enable the model to autonomously
decide when to terminate the latent reasoning, or b) always pad the latent thoughts to a constant length. We
found that both approaches work comparably well. Therefore, we use the second option in our experiment for
simplicity, unless specified otherwise.

1If a language reasoning chain is shorter than k steps, then all the language thoughts will be removed.

4

Coconutの学習 (2)
l Transformerの構造を単純化して数式で書くと、

l ここでトークン埋め込み関数 を用いた履歴が

l 連続ベクトルで考えている間は、 が次になる

ここで

Et =
⇥
e(w1), e(w2), · · · , e(wt)

⇤
<latexit sha1_base64="Io3k5o1xMNnHpbgHT98NsN5ebbk=">AAAJPHichZZLb9NAEMenlIcJj7ZwQeISEQW1UhVtDAiEVKmlrUTVqmpT2qZqqih2N8HEsS3bTZtG+QKckThwAokD4htw4FIOfAEOvXNBFaciOMCB2bVNHp4ER4l3Z3//8czuZtaaYxqez9jx0Jnhs+fOX1AuJi5dvnJ1ZHTs2oZn77k6X9dt03bzWsnjpmHxdd/wTZ53XF6qaSbf1KqzYnyzzl3PsK0nfsPhO7VSxTLKhl7y0VQczcwX/eRUsqAZFXObj+8XsxOT4qZOTBb0Xdv3ZM+fEIC7kyiOpliGySsZb2TDRgrCa8UeG/4NBdgFG3TYgxpwsMDHtgkl8PCzDVlg4KBtB5rwDK0utg1JcGhBAtV7yHFkSmit4m8Fe9uh1cK+8OpJvY7PMfHrojIJafaFvWOn7DN7z76xP319NaUPEU0D71qg5U5x5PmNtV//VdXw7sPTtmqAQkN6UE5cZiGyqeOvjn4Hz4APZXggNQbOhCMtYk70IJr64cvTtYe5dPM2e8NOcDZes2N2hPNh1X/ob1d57pX0vouaMt6DZ6ZwRZrYi/LScKwpra0wmjZ/QJAHBNcguAbBHRLcIcHtE9w+wZUJrkxwVYKrEtwMwc0Q3ALBLRDcIsEtElye4PIEt0VwWwTHCI7FOC1cX7FrqXXVwnUNxuPrqck9H41zYryGO7ZNFGQ/TjkYo9HFBRaK9GKkR5IiNh/z72QjW5wWsxTxnYq2vUWoTFkhNLT06jpHKOVKLOOVPhmvobUiV7KTblvjiqWuqNqapZ6YOlXLYfw6jplYWZZjxHzPjtKwPx+jcgSVi1FzstqkQJV0Gau5qHvBakbnQxBHUJXoETX0m8aei54D76JOcrS0/SbCiKpoF3GZckVFHXXlWNAvyFNFzKohzxzzn36qx9ecrKKmjIdjdjZmKeq3D7PYrslnWRhNkFukbGE9V2UlT0sv/Z4mVFUZm4W5Z+CePDuj+kyNtQZo1L4acX50Zt+dbb+5s8N/BM4cvilke98L4o0NNZO9k1FX76amH4XvDArchFswjtHch2l4jDt/HZ/0Aj7AEXxSPipflRPle4CeGQo116HrUn7+BfO4480=</latexit>

ht
<latexit sha1_base64="fCIcUXU3iJHCVh2GftdDUj+dOyw=">AAAJEHichZbPTxNBFMcf4I+1/gD0YuKF2NR4aqZVozExAYFEAiFQBEqAkO4yhbXb3c3uUihN/wEPHrxg4kkTD8Z/wJsxXox3D/wJxiMmHvTgm7e79se+lm3anXnz+b59b2b6ZnXXMv1AiOOBwaEzZ8+d1y6kLl66fGV4ZPTqiu/seYZcNhzL8Yp6yZeWacvlwAwsWXQ9WarqllzVK5NqfLUmPd907KdB3ZWb1dKObZZNoxQo0+5WkNoaSYusoGss2chFjTRE14IzOvQHNmAbHDBgD6ogwYYA2xaUwMfPOuRAgIu2TWjAM7R62DaJkNCEFKr3kJPIlNBawd8d7K1HVhv7yqtPegOfY+HXQ+UYZMR38V6ciK/ig/gh/vb01SAfKpo63vVQK92t4efXl36fqqriPYDdlqqPQke6X06SslDZ1PDXQL/9ZyCAMjwgjYkz4ZJFzYkRRlM7PDpZeljING6Jt+InzsYbcSy+4HzYtV/Gu0VZeE3et1FTxnv4zDSuSAN7cV46jjXI2oyiafEHDHnAcHWGqzPcIcMdMtw+w+0zXJnhygxXYbgKw00w3ATDzTDcDMPNMtwswxUZrshwawy3xnCC4USC06P1VbuWW1c9WtdwPLmeOu35eFwy41XcsS1ig/pJysUYzQ4utHCknyB9llSxBZh/OxvbkrSapZhvV7TsTUZlUYXQ0dKtax/hlAuJjBd6ZLyE1h1ayXa6ZU0q5jqiamnmumJqV81H8Rs4ZmFlmU8Q0107Ssf+dIIqMFQhQU1RtUlDnugyVnNV98LVjM+HMI6wKvEj+chvBnseeg69qzop0dLym4oiqqBdxWXRiqo66tFY2N+gU0XNqklnjvVf/6jL1xRVUYvikZidg1mq+h3AJLar9Cwbowlzi5VNrOd5quQZ8tLraUpVodhszD0L9+jsjOszN9bso8n31Kjzoz37zmx7zZ0T/SNw5vBNIdf9XpBsrOSzuTvZ/OLd9Pjj6J1BgxtwE25jNPdhHJ7gzl/GJ+3CCziCV9pL7aP2SfscooMDkeYadFzat38CNdR0</latexit>

e()
<latexit sha1_base64="3m8kildVNeTPl0aZsffanXJy3Fo=">AAAJEHichZbPTxNBFMcf4o+1/gD0YuKF2NTgpZlWjcbEBAQSCYRAESgBQrrLFNZudze7S6E0/Qc8ePCCiSdNPBj/AW/GeDHePfAnGI+YeNCDb95u3bb7Wrdpd+bN5/v2vZnpm9Vdy/QDIY4HTg2ePnP2nHY+deHipctDwyNXVnxnzzPksuFYjlfUS760TFsuB2ZgyaLryVJVt+SqXplU46s16fmmYz8J6q7crJZ2bLNsGqVAmeTYrdTWcFpkBV2jyUYuaqQhuhackcHfsAHb4IABe1AFCTYE2LagBD5+1iEHAly0bUIDnqLVw7ZJhIQmpFC9h5xEpoTWCv7uYG89strYV1590hv4HAu/HipHISO+iXfiRHwR78V38aenrwb5UNHU8a6HWuluDT27tvTrv6oq3gPYjVV9FDrS/XKSlIXKpoa/BvrtPwMBlOE+aUycCZcsak6MMJra4dHJ0oNCpnFTvBE/cDZei2PxGefDrv003i7Kwivyvo2aMt7DZ6ZxRRrYa+Wl41iDrM0ompg/YMgDhqszXJ3hDhnukOH2GW6f4coMV2a4CsNVGG6C4SYYbobhZhhuluFmGa7IcEWGW2O4NYYTDCcSnB6tr9q13Lrq0bqG48n11GnPt8YlM17FHRsTG9RPUi7GaHZwoYUj/QTps6SKLcD829mWLUmrWWrx7YrY3mRUFlUIHS3duvYRTrmQyHihR8ZLaN2hlWynY2tSMdcRVayZ64qpXTUfxW/gmIWVZT5BTHftKB370wmqwFCFBDVF1SYNeaLLWM1V3QtXs3U+hHGEVYkfyUd+M9jz0HPoXdVJiZbYbyqKqIJ2FZdFK6rqqEdjYX+DThU1qyadOdY//cMuX1NURS2KR2J2Dmap6ncAk9iu0rNsjCbMraVsYj3PUyXPkJdeT1OqCsVmY+5ZuEtnZ6s+c2PNPpp8T406P9qz78y219w50T8CZw7fFHLd7wXJxko+m7udzS/eSY8/it4ZNLgON2AMo7kH4/AYd/4yPmkXnsMRvNReaB+0j9qnED01EGmuQselff0LgVvT7w==</latexit>

で、 は最後の隠れ層の状態

(
ht = Transformer(Et)

p(wt+1|wt) = Softmax(Wht)
<latexit sha1_base64="YRXnrJY3mopkvYiDlmTX5KH2YT0=">AAAJsnichZZLb9NAEMcnPBvzKnBB4hIRFbVCRJsAAioh8WglKlBV+qAFjCLbXacmfrHePlLjL8AX4MAJBAfEx+DCF+DQj4A4FokDHBivHZLGk+Io8e7M7z+e2XXGNkPXiSRjO6UDBw8dPnJ0pKwdO37i5KnR02ceR8G6sPiSFbiBWDGNiLuOz5ekI12+EgpueKbLl832vdS/vMFF5AT+ouyE/LlntHzHdixDoqk5+kF3uS31WNNN3nL82BDC6CSxcBNtrSkrepsL/zKrXede5eKtSqwLr7IoDD+yA+FxkSh/PZTj0005UdF1LRzfbMbyUj15hWeM/bIikwkyzEJgS8/Y6oVYxgtOaDr3V/MsNF04rTVZ05qjVVZj6qgUB/V8UIX8mAtOH/wNOqxCABasgwccfJA4dsGACD/PoA4MQrQ9hxheoFXg2FEEhwQ0VK8jx5Ex0NrG3xbOnuVWH+dp1EjpLbyOi1+BygqMsW/sE9tlX9ln9p39GRorVjHSbDp4NjMtD5unXp9b+PVflYdnCWs91T4KE+n9auKqirSaDfy1MO7+KyDBhhtK4+BKhMqSromVZbOx/WZ3YXJ+LL7I3rMfuBrv2A77guvhb/y0Pj7i829V9FXU2HjOrlnFHYlx1q3LRF+srEmeTY/fIsgtgusQXIfgtglum+A2CW6T4GyCswmuTXBtgrtDcHcIbobgZgjuAcE9ILgVglshuCcE94TgGMGxAmfm+5vetdS+mvm+Zv7ifprqnu/6OeH38I7tEbqaF6kQc3T2cJmFIqMCGZFkmpvE+vvZrq1Ip6vU5fsVPXtCqFzVIUy0DOr6PZRyrlDx3JCKF9DaUjvZT/esRcXDPVn1NA8HcupXzeb5W+hzsbPMFojpgTvKxPl0gZonqPkCNaW6TRUairaxm6d9L9vN7vMhyyPrSrSnkccdw5nAyFn0tE9ytPTianlGbbSneblqR9M+KpQvm+vqqZKuqqOeOe4//a2BWFOqi7oqH47VBVhl2r8l3MOxp67lYzZZbV1lgv28oTr5mIoy7Gqpqq1y87H2GlxTz85uf6Z8yT6axlBN+vzor35vtcPWLsj/Ebhy+KZQH3wvKA4eN2r1K7XGo6vV23fzd4YROA8XYByzuQ634T7e+UtglbQSK90sTZavlp+WjbKVoQdKueYs7DnK7l/9sQrP</latexit>

Et =
⇥
e(w1), · · · , e(wi), hi, · · · , ht�1

⇤
<latexit sha1_base64="K7YzcnMQ+Gw7caOIkym9b4zr7G4=">AAAJSnichZbPTxNBFMcfglrqD0AvJl4amxpIsJlWjcZIAgKJBEKgCJRQ0nSXaVm73d3sLoXS9B/wH/DgSRIPxj/DCwcvmnjgTzDexMQYPPhmdtdtu691m3Zn3ny+b9+bmb5ZxdI1x2XsdODC4NDFS5djw/ErV69dHxkdu7HhmPu2ytdVUzftvFJyuK4ZfN3VXJ3nLZuXaorON5XqrBjfrHPb0Uzjhduw+E6tVDG0sqaWXDQVR5/OF93EVKKgaBV9O8HHD4qZicmCumu6zqToaROTe0UtsOwVm+69TEvi9k68OJpkaSavRLSR8RtJ8K8Vc2zwHAqwCyaosA814GCAi20dSuDgZxsywMBC2w404SVabWxrkuDQgjiq95HjyJTQWsXfCva2fauBfeHVkXoVn6Pj10ZlAlLsK3vPztgJ+8C+sT89fTWlDxFNA++Kp+VWceTVrbVf/1XV8O7CXqjqo1CQ7pcTl1mIbOr4q6Lf/jPgQhkeS42GM2FJi5gT1YumfvT6bO1JLtW8y47Zd5yNt+yUfcT5MOo/1XerPPdGet9FTRnv3jOTuCJN7AV5KTjWlNaWH03IHxLkIcE1CK5BcEcEd0RwBwR3QHBlgisTXJXgqgQ3Q3AzBLdAcAsEt0hwiwSXJ7g8wW0R3BbBMYJjEU7x11fsWmpdFX9dvfHoeipyzwfjnBiv4Y4NiYLsRykLY9Q6OM9CkU6EdEhSxOZi/u1sYIvSYpYCvl0R2luESpcVQkFLt659hFKuRDJe6ZHxGlorciXb6dAaVSx1RBVqlrpialct+/GrOKZjZVmOEPNdO0rB/nyEyhFULkLNyWqThKyky1jNRd3zVjM4H7w4vKpEj2R9vyns2ejZ8y7qJEdL6DfuR1RFu4hLlysq6qgtx7x+QZ4qYlY1eebo//RTXb7mZBXVZTwcszMxS1G/XZjFdk0+y8BovNwCZQvreVZW8pT00utpQlWVsRmYexoeyrMzqM/UWKuPJttTI86P9uw7s+01d6b/j8CZwzeFTPd7QbSxkU1n7qezqw+S08/8d4YY3IY7MI7RPIJpeI47fx2fdAwn8Bm+xD7FfsR+x8499MKAr7kJHdfw0F/2uuhj</latexit>

wi = <bot>
<latexit sha1_base64="lazj/x7ejKw6Nk+PBz7uTgeyaNA=">AAAJJnichZbPTxNBFMcf4I8VfwB6IfFSbGo8NdOq0RgxIJBIIASKQA0lTXeZ4tr9ld2lUJr6B/gPePCk0URj9J/w4skbMdy8Go+YeNCDb2Z33bb7Wrdpd+bN5/v2vZnpm1UdQ/d8xo4GBodOnDx1WjkzfPbc+Qsjo2MX1z1719X4mmYbtltUKx43dIuv+bpv8KLj8oqpGnxDrc2I8Y06dz3dth76DYdvmZUdS6/qWsVHU3l0fK+spyZTJdds3i1NlCZU2xe3e63yaJplmbxSyUYubKQhvJbtsaHfUIJtsEGDXTCBgwU+tg2ogIefTcgBAwdtW9CEJ2h1sa1LgkMLhlG9ixxHpoLWGv7uYG8ztFrYF149qdfwOQZ+XVSmIMMO2Tt2zD6z9+w7+9PTV1P6ENE08K4GWu6UR56Nr/76r8rEuw+PY1UfhYp0v5y4zEJkU8dfDf32nwEfqnBbanScCUdaxJxoQTT1g+fHq3cKmeZV9or9wNl4yY7YJ5wPq/5Te7PCCy+k923UVPEePDONK9LEXpSXimNNaW2F0cT8PkHuE1yD4BoEd0BwBwS3R3B7BFcluCrB1QiuRnDTBDdNcPMEN09wCwS3QHBFgisS3COCe0RwjOBYglPD9RW7llpXNVzXYDy5nqrc89E4J8ZN3LExUZL9JOVgjHoHF1go0kuQHkmK2HzMv52NbElazFLEtytie4tQGbJCqGjp1rWPUMrlRMbLPTJeReuOXMl2OrYmFYsdUcWaxa6Y2lVLYfwajhlYWZYSxFzXjlKxP5egCgRVSFCzstqkIS/pKlZzUfeC1YzOhyCOoCrRI/nQbwZ7LnoOvIs6ydES+x0OI6qhXcRlyBUVddSVY0G/JE8VMau6PHOMf/rJLl+zsooaMh6O2dmYpajfPsxg25TPsjCaILdI2cJ6npeVPCO99HqaUNVkbBbmnoWb8uyM6jM11uqjyffUiPOjPfvObHvNnR3+I3Dm8E0h1/1ekGys57O569n8yo301P3wnUGBy3AFrmE0t2AKHuDOX8MnPYXX8AE+Km+VL8qh8jVABwdCzSXouJRvfwFA+NvK</latexit>

Et
<latexit sha1_base64="z6ZpUJmzTVyyjKsOI1gXLlxjTzE=">AAAJD3ichZbNbtNAEMenLR+mfLSFCxKXiiiIU7QJIBASUktbiapV1Sa0TdVWVexugoljW7abNo3yAkgcuNADJ5A4IB6AG0LiAg/AoY+AOBaJAxyYHdvkw5PgKPHu7O8/ntndzFp3LdMPhDgeGh45dfrMWe3c6PkLFy+NjU9cXvOdPc+Qq4ZjOV5RL/nSMm25GpiBJYuuJ0s13ZLrenVGja/Xpeebjv04aLhyu1aq2GbZNEoBmgpzO8HOeEpkBF2TyUY2aqQgupadiZHfsAW74IABe1ADCTYE2LagBD5+NiELAly0bUMTnqLVw7ZJhIQWjKJ6DzmJTAmtVfytYG8zstrYV1590hv4HAu/HionIS2+iXfiRHwR78V38aevryb5UNE08K6HWunujD27Wvj1X1UN7wE8aasGKHSkB+UkKQuVTR1/DfQ7eAYCKMM90pg4Ey5Z1JwYYTT1w6OTwv18unlDvBE/cDZei2PxGefDrv803q7I/CvyvouaMt7DZ6ZwRZrYi/PScaxJ1lYUTZs/YMgDhmswXIPhDhnukOH2GW6f4coMV2a4KsNVGW6a4aYZbp7h5hlugeEWGK7IcEWG22C4DYYTDCcSnB6tr9q13Lrq0bqG48n11GnPx+OSGa/hjm0TW9RPUi7GaHZxoYUj/QTps6SKLcD8O9nYlqTVLMV8p6JtbzEqiyqEjpZeXecIp1xOZLzcJ+MCWiu0kp1025pULHZF1dYs9sTUqVqK4jdwzMLKspQg5np2lI79uQSVZ6h8gpqlapOCHNFlrOaq7oWrGZ8PYRxhVeJHcpHfNPY89Bx6V3VSoqXtdzSKqIp2FZdFK6rqqEdjYX+LThU1qyadOdY//YMeX7NURS2KR2J2Dmap6ncAM9iu0bNsjCbMLVa2sJ7nqJKnyUu/pylVlWKzMfcM3KGzM67P3FhrgCbXV6POj87su7PtN3dO9I/AmcM3hWzve0GysZbLZG9lciu3U1MPo3cGDa7BdbiJ0dyFKXiEO38Vn1SB5/ASjrQX2gfto/YpRIeHIs0V6Lq0r38BTtTUPQ==</latexit>

論文のもの
を、わかり
やすく改変

Coconutの学習 (3)
l いきなり連続ベクトルの系列を学習しろと言っても
無理なので、通常の言葉によるCoTから始めて、
徐々に始めの方のトークンを連続ベクトルに置き換える

l 目的関数は連続ベクトルの分は含まず、推論結果の
確率を最適化à言語に縛られない効率的な思考を学習
Figure 2 Training procedure of Chain of Continuous Thought (Coconut). Given training data with language reasoning
steps, at each training stage we integrate c additional continuous thoughts (c = 1 in this example), and remove one
language reasoning step. The cross-entropy loss is then used on the remaining tokens after continuous thoughts.

After the latent mode finishes (t � j), the input reverts to using the token embedding, i.e., Et =
[e(x1), e(x2), ..., e(xi), hi, hi+1, ..., hj�1, e(xj), ..., e(xt)]. It is worth noting that the last hidden states have
been processed by the final normalization layer, so they are not too large in magnitude. M(xt+1 | xt) is
not defined when i < t < j, since the latent thought is not intended to be mapped back to language space.
However, softmax(Wht) can still be calculated for probing purposes (see Section 4).

Training Procedure. In this work, we focus on a problem-solving setting where the model receives a question as
input and is expected to generate an answer through a reasoning process. We leverage language CoT data
to supervise continuous thought by implementing a multi-stage training curriculum inspired by Deng et al.
(2024). As shown in Figure 2, in the initial stage, the model is trained on regular CoT instances. In the
subsequent stages, at the k-th stage, the first k reasoning steps in the CoT are replaced with k ⇥ c continuous
thoughts1, where c is a hyperparameter controlling the number of latent thoughts replacing a single language
reasoning step. Following Deng et al. (2024), we also reset the optimizer state when training stages switch. We
insert <bot> and <eot> tokens (which are not counted towards c) to encapsulate the continuous thoughts.

During the training process, we optimize the normal negative log-likelihood loss, but mask the loss on questions
and latent thoughts. It is important to note that the objective does not encourage the continuous thought to
compress the removed language thought, but rather to facilitate the prediction of future reasoning. Therefore,
it’s possible for the LLM to learn more effective representations of reasoning steps compared to human
language.

Training Details. Our proposed continuous thoughts are fully differentiable and allow for back-propagation. We
perform n+ 1 forward passes when n latent thoughts are scheduled in the current training stage, computing
a new latent thought with each pass and finally conducting an additional forward pass to obtain a loss
on the remaining text sequence. While we can save any repetitive computing by using a KV cache, the
sequential nature of the multiple forward passes poses challenges for parallelism. Further optimizing the
training efficiency of Coconut remains an important direction for future research.

Inference Process. The inference process for Coconut is analogous to standard language model decoding,
except that in latent mode, we directly feed the last hidden state as the next input embedding. A challenge
lies in determining when to switch between latent and language modes. As we focus on the problem-solving
setting, we insert a <bot> token immediately following the question tokens. For <eot>, we consider two
potential strategies: a) train a binary classifier on latent thoughts to enable the model to autonomously
decide when to terminate the latent reasoning, or b) always pad the latent thoughts to a constant length. We
found that both approaches work comparably well. Therefore, we use the second option in our experiment for
simplicity, unless specified otherwise.

1If a language reasoning chain is shorter than k steps, then all the language thoughts will be removed.

4

z }| {
<latexit sha1_base64="GBsAS7eWIFxd67Vs+NeuYNgnEaY=">AAAHgXichZXNbtNAEMenDZBSPprCBamXiqh8XKJNQCqCSwtUompVpQlpUzVV5HXXqYljW7aTNrFy4MoLcOAEEkKICzwDF16AQx8BcSwSFw6M146cxNPWUbK7M7//ZGZ3vcttQ3c9xo4nJlMXLl5KT12evnL12vWZzOyNLddqO6qoqJZhOVWuuMLQTVHxdM8QVdsRSosbYps3nwX+7Y5wXN0yX3pdW+y1lIapa7qqeGiqZ+ZqFrq5o6jCrx24dtAuila/X/f79UyW5Zh85pOdfNTJQvQUrdnUXajBPligQhtaIMAED/sGKODiZxfywMBG2x748AqtDvZ1SQjowzSq28gJZBS0NvG3gaPdyGriOIjqSr2K/2Pg10HlPCywn+wzO2E/2Bf2i/07NZYvYwTZdLHloVbY9Zk3t8p/z1W1sPXgIFadoeBIn12TBxo8krXoWJstLUGVahi/03t7Un5cWvDvsA/sN9b3nh2z71ih2fmjftwUpXcy+j5qNGw72KqQxTn2cTTIlKPPl9Z+lE3MHxHkEcF1Ca5LcD2C6xHcIcEdEpxGcBrBNQmuSXDLBLdMcKsEt0pwawS3RnBVgqsS3A7B7RAcIziW4Hi0vsE+pNaVR+sa+pPryeUuHvgF4W/hjo2JmhwnKRtz1Ee40EKRboJ0STLIzcP6h9mBLUkHszTghxWxvU+oDPnOc7SM64Y9lLKYqLh4SsVltDbkSg7TsTWpWB/JKtasj+U0rNqI8lfRZ+DJspEgVsZ2FMfxSoIqEVQpQT2Xp00WCpLW8HwOzr1wNQcnfphHeCrRnkIQF2+g/Ph9k+xsFXL5B7nC5sPs0tPoLpqCObgN9zD+IizBC5z/CubwGj7BV/iWTqXvp1m6EKKTE5HmJow86Sf/AR2DjPk=</latexit>

ここは言葉

関連研究
l implicit CoT (Deng+ 2024) :
訓練中に推論ステップの文を最初から徐々に省略して、
モデルが結果を「先読み」できるようにするà性能向上

l “Pause”トークン (Goyal+ 2023) :
CoTに学習可能な“<pause>” トークンを挟むことで、
性能の向上を確認

l LLMに明示的に木構造を探索させるようにする
(Xie+ 2023; Yao+ 2023; Hao+ 2024)

l Diffusion-of-Thoughts (Ye+ 2024) :
言語のDiffusionモデルにCoTを導入
à最初から連続ベクトルが対応している

実験

l GSM8k: 算数の問題
l ProntoQA: 論理的推論、これは推論が簡単なため、
ランダムなDAGを生成して難しくしたのがProsQA

l 算数は素のCoTより若干低いが、論理的推論は高性能

Method
GSM8k ProntoQA ProsQA

Acc. (%) # Tokens Acc. (%) # Tokens Acc. (%) # Tokens

CoT 42.9 ±0.2 25.0 98.8 ±0.8 92.5 77.5 ±1.9 49.4

No-CoT 16.5 ±0.5 2.2 93.8 ±0.7 3.0 76.7 ±1.0 8.2
iCoT 30.0⇤ 2.2 99.8 ±0.3 3.0 98.2 ±0.3 8.2

Pause Token 16.4 ±1.8 2.2 77.7 ±21.0 3.0 75.9 ±0.7 8.2

Coconut (Ours) 34.1 ±1.5 8.2 99.8 ±0.2 9.0 97.0 ±0.3 14.2
- w/o curriculum 14.4 ±0.8 8.2 52.4 ±0.4 9.0 76.1 ±0.2 14.2

- w/o thought 21.6 ±0.5 2.3 99.9 ±0.1 3.0 95.5 ±1.1 8.2
- pause as thought 24.1 ±0.7 2.2 100.0 ±0.1 3.0 96.6 ±0.8 8.2

Table 1 Results on three datasets: GSM8l, ProntoQA and ProsQA. Higher accuracy indicates stronger reasoning ability,
while generating fewer tokens indicates better efficiency. ⇤The result is from Deng et al. (2024).

answer. (2) No-CoT : The LLM is trained to directly generate the answer without using a reasoning chain.
(3) iCoT (Deng et al., 2024): The model is trained with language reasoning chains and follows a carefully
designed schedule that “internalizes” CoT. As the training goes on, tokens at the beginning of the reasoning
chain are gradually removed until only the answer remains. During inference, the model directly predicts
the answer. (4) Pause token (Goyal et al., 2023): The model is trained using only the question and answer,
without a reasoning chain. However, different from No-CoT, special <pause> tokens are inserted between
the question and answer, which are believed to provide the model with additional computational capacity
to derive the answer. For a fair comparison, the number of <pause> tokens is set the same as continuous
thoughts in Coconut.

We also evaluate some variants of our method: (1) w/o curriculum: Instead of the multi-stage training,
we directly use the data from the last stage which only includes questions and answers to train Coconut.
The model uses continuous thoughts to solve the whole problem. (2) w/o thought : We keep the multi-stage
training which removes language reasoning steps gradually, but don’t use any continuous latent thoughts.
While this is similar to iCoT in the high-level idea, the exact training schedule is set to be consistent with
Coconut, instead of iCoT. This ensures a more strict comparison. (3) Pause as thought : We use special
<pause> tokens to replace the continuous thoughts, and apply the same multi-stage training curriculum as
Coconut.

4.4 Results and Discussion

Figure 3 Accuracy on GSM8k with different
number of continuous thoughts.

We show the overall results on all datasets in Table 1. Contin-
uous thoughts effectively enhance LLM reasoning, as shown
by the consistent improvement over no-CoT. It even shows
better performance than CoT on ProntoQA and ProsQA.
We describe several key conclusions from the experiments as
follows.

“Chaining” continuous thoughts enhances reasoning. In conven-
tional CoT, the output token serves as the next input, which
proves to increase the effective depth of LLMs and enhance
their expressiveness (Feng et al., 2023). We explore whether
latent space reasoning retains this property, as it would sug-
gest that this method could scale to solve increasingly complex
problems by chaining multiple latent thoughts.

In our experiments with GSM8k, we found that Coconut
outperformed other architectures trained with similar strate-
gies, particularly surpassing the latest baseline, iCoT (Deng
et al., 2024). The performance is significantly better than Coconut (pause as thought) which also enables
more computation in the LLMs. While Pfau et al. (2024) empirically shows that filler tokens, such as
the special <pause> tokens, can benefit highly parallelizable problems, our results show that Coconut

6

推論ステップ数と推論

l 連続的推論のステップ数kが上がると、性能が上昇
– k=4程度でほぼ飽和

l 素のCoTと比べて、正解の質も上がっている

Figure5 The accuracy of final answer (left) and reasoning process (right) of multiple variants of Coconut and baselines
on ProsQA.

5 Understanding the Latent Reasoning in Coconut

In this section, we present an analysis of the latent reasoning process with a variant of Coconut. By
leveraging its ability to switch between language and latent space reasoning, we are able to control the
model to interpolate between fully latent reasoning and fully language reasoning and test their performance
(Section 5.2). This also enables us to interpret the the latent reasoning process as tree search (Section 5.3).
Based on this perspective, we explain why latent reasoning can make the decision easier for LLMs (Section 5.4).

5.1 Experimental Setup

Methods. The design of Coconut allows us to control the number of latent thoughts by manually setting the
position of the <eot> token during inference. When we enforce Coconut to use k continuous thoughts, the
model is expected to output the remaining reasoning chain in language, starting from the k + 1 step. In our
experiments, we test variants of Coconut on ProsQA with k 2 {0, 1, 2, 3, 4, 5, 6}. Note that all these variants
only differ in inference time while sharing the same model weights. Besides, we report the performance of
CoT and no-CoT as references.

To address the issue of forgetting earlier training stages, we modify the original multi-stage training curriculum
by always mixing data from other stages with a certain probability (p = 0.3). This updated training curriculum
yields similar performance and enables effective control over the switch between latent and language reasoning.

Metrics. We apply two sets of evaluation metrics. One of them is based on the correctness of the final answer,
regardless of the reasoning process. It is the metric used in the main experimental results above (Section 4.4).
To enable fine-grained analysis, we define another metric on the reasoning process. Assuming we have a
complete language reasoning chain which specifies a path in the graph, we can classify it into (1) Correct Path:
The output is one of the shortest paths to the correct answer. (2) Longer Path: A valid path that correctly
answers the question but is longer than the shortest path. (3) Hallucination: The path includes nonexistent
edges or is disconnected. (4) Wrong Target: A valid path in the graph, but the destination node is not the one
being asked. These four categories naturally apply to the output from Coconut (k = 0) and CoT, which
generate the full path. For Coconut with k > 0 that outputs only partial paths in language (with the initial
steps in continuous reasoning), we classify the reasoning as a Correct Path if a valid explanation can complete
it. Also, we define Longer Path and Wrong Target for partial paths similarly. If no valid explanation completes
the path, it’s classified as hallucination. In no-CoT and Coconut with larger k, the model may only output
the final answer without any partial path, and it falls into (5) Correct Label or (6) Incorrect Label. These six
categories cover all cases without overlap.

8

ProsQAでの結果

思考ベクトルと内部状態
l 3x3x60=540 を計算
させる問題の思考ベク
トルをtokenにマップ
すると、
“180” “_180” “9” の
トークンの確率が高く
なっていた

l 複数の思考ステップを
統合して学習

architecture is more effective for general problems, e.g., math word problems, where a reasoning step often
heavily depends on previous steps. Additionally, we experimented with adjusting the hyperparameter c,
which controls the number of latent thoughts corresponding to one language reasoning step (Figure 3). As
we increased c from 0 to 1 to 2, the model’s performance steadily improved.2 These results suggest that a
chaining effect similar to CoT can be observed in the latent space.

In two other synthetic tasks, we found that the variants of Coconut (w/o thoughts or pause as thought), and
the iCoT baseline also achieve impressive accuracy. This indicates that the model’s computational capacity
may not be the bottleneck in these tasks. In contrast, GSM8k, being an open-domain question-answering
task, likely involves more complex contextual understanding and modeling, placing higher demands on
computational capability.

Latent reasoning outperforms language reasoning in planning-intensive tasks. Complex reasoning often requires
the model to “look ahead” and evaluate the appropriateness of each step. Among our datasets, GSM8k and
ProntoQA are relatively straightforward for next-step prediction, due to intuitive problem structures and
limited branching. In contrast, ProsQA’s randomly generated DAG structure significantly challenges the
model’s planning capabilities. As shown in Table 1, CoT does not offer notable improvement over No-CoT.
However, Coconut, its variants, and iCoT substantially enhance reasoning on ProsQA, indicating that latent
space reasoning provides a clear advantage in tasks demanding extensive planning. An in-depth analysis of
this process is provided in Section 5.

TheLLMstill needs guidance to learn latent reasoning. In the ideal case, the model should learn the most effective
continuous thoughts automatically through gradient descent on questions and answers (i.e., Coconut w/o
curriculum). However, from the experimental results, we found the models trained this way do not perform
any better than no-CoT.

Figure 4 A case study where we decode the continuous
thought into language tokens.

With the multi-stage curriculum which decomposes
the training into easier objectives, Coconut is able
to achieve top performance across various tasks. The
multi-stage training also integrates well with pause
tokens (Coconut- pause as thought). Despite using
the same architecture and similar multi-stage train-
ing objectives, we observed a small gap between the
performance of iCoT and Coconut (w/o thoughts).
The finer-grained removal schedule (token by token)
and a few other tricks in iCoT may ease the training
process. We leave combining iCoT and Coconut
as future work. While the multi-stage training used
for Coconut has proven effective, further research
is definitely needed to develop better and more gen-
eral strategies for learning reasoning in latent space,
especially without the supervision from language rea-
soning chains.

Continuous thoughts are efficient representations of
reasoning. Though the continuous thoughts are not
intended to be decoded to language tokens, we can
still use it as an intuitive interpretation of the continuous thought. We show a case study in Figure 4 of
a math word problem solved by Coconut (c = 1). The first continuous thought can be decoded into
tokens like “180”, “ 180” (with a space), and “9”. Note that, the reasoning trace for this problem should be
3⇥ 3⇥ 60 = 9⇥ 60 = 540, or 3⇥ 3⇥ 60 = 3⇥ 180 = 540. The interpretations of the first thought happen to be
the first intermediate variables in the calculation. Moreover, it encodes a distribution of different traces into
the continuous thoughts. As shown in Section 5.3, this feature enables a more advanced reasoning pattern for
planning-intense reasoning tasks.

2We discuss the case of larger c in Appendix C.

7

ケーススタディ

l 通常のCoTは、赤文字の誤った論理的関係をhallucinate
してしまう

l k=2のCoconutは、正しく結果を推論

Figure 6 A case study of ProsQA. The model trained with CoT hallucinates an edge (Every yumpus is a rempus) after
getting stuck in a dead end. Coconut (k=1) outputs a path that ends with an irrelevant node. Coconut (k=2)
solves the problem correctly.

Figure 7 An illustration of the latent search trees. The example is the same test case as in Figure 6. The height of
a node (denoted as h in the figure) is defined as the longest distance to any leaf nodes in the graph. We show the
probability of the first concept predicted by the model following latent thoughts (e.g., “lempus” in the left figure). It is
calculated as the multiplication of the probability of all tokens within the concept conditioned on previous context
(omitted in the figure for brevity). This metric can be interpreted as an implicit value function estimated by the model,
assessing the potential of each node leading to the correct answer.

5.2 Interpolating between Latent and Language Reasoning

Figure 5 shows a comparative analysis of different reasoning methods on ProsQA. As more reasoning is done
with continuous thoughts (increasing k), both final answer accuracy (Figure 5, left) and the rate of correct
reasoning processes (“Correct Label” and “Correct Path” in Figure 5, right) improve. Additionally, the rate of
“Hallucination” and “Wrong Target” decrease, which typically occur when the model makes a wrong move
earlier. This also indicates the better planning ability when more reasoning happens in the latent space.

A case study is shown in Figure 6, where CoT hallucinates an nonexistent edge, Coconut (k = 1) leads to
a wrong target, but Coconut (k = 2) successfully solves the problem. In this example, the model cannot
accurately determine which edge to choose at the earlier step. However, as latent reasoning can avoid making
a hard choice upfront, the model can progressively eliminate incorrect options in subsequent steps and achieves
higher accuracy at the end of reasoning. We show more evidence and details of this reasoning process in
Section 5.3.

The comparison between CoT and Coconut (k = 0) reveals another interesting observation: even when

9

ケーススタディ (2)
l この背後で何が起きているのか？

l 連続的思考の終わった<eot>の後に “Every [X] is..” を
出力させてXの確率を計算すると、その時点で見込みの
あるノード(lempus)に高い確率

l 2ステップ目で同様にすると、目標直前の rorpusに
確率が集中しているàBFS的な挙動

Figure 6 A case study of ProsQA. The model trained with CoT hallucinates an edge (Every yumpus is a rempus) after
getting stuck in a dead end. Coconut (k=1) outputs a path that ends with an irrelevant node. Coconut (k=2)
solves the problem correctly.

Figure 7 An illustration of the latent search trees. The example is the same test case as in Figure 6. The height of
a node (denoted as h in the figure) is defined as the longest distance to any leaf nodes in the graph. We show the
probability of the first concept predicted by the model following latent thoughts (e.g., “lempus” in the left figure). It is
calculated as the multiplication of the probability of all tokens within the concept conditioned on previous context
(omitted in the figure for brevity). This metric can be interpreted as an implicit value function estimated by the model,
assessing the potential of each node leading to the correct answer.

5.2 Interpolating between Latent and Language Reasoning

Figure 5 shows a comparative analysis of different reasoning methods on ProsQA. As more reasoning is done
with continuous thoughts (increasing k), both final answer accuracy (Figure 5, left) and the rate of correct
reasoning processes (“Correct Label” and “Correct Path” in Figure 5, right) improve. Additionally, the rate of
“Hallucination” and “Wrong Target” decrease, which typically occur when the model makes a wrong move
earlier. This also indicates the better planning ability when more reasoning happens in the latent space.

A case study is shown in Figure 6, where CoT hallucinates an nonexistent edge, Coconut (k = 1) leads to
a wrong target, but Coconut (k = 2) successfully solves the problem. In this example, the model cannot
accurately determine which edge to choose at the earlier step. However, as latent reasoning can avoid making
a hard choice upfront, the model can progressively eliminate incorrect options in subsequent steps and achieves
higher accuracy at the end of reasoning. We show more evidence and details of this reasoning process in
Section 5.3.

The comparison between CoT and Coconut (k = 0) reveals another interesting observation: even when

9

まとめ

まとめ
l COCONUT: 言葉を使わないChain-of-Thought
– Chain-of-Thoughtの各文を、最後の単語の出力直前の
潜在層で置き換え

l 通常のCoTよりも、場合によって高い性能
– 思考を言葉にしてしまうと一つの可能性しか保持
できず、深さ優先探索的になるが、
連続ベクトルにすることで複数の可能性を幅優先探索

– 言語に縛られないことで、効率的で短いCoTを達成

