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Abstract

Semantic change detection comprises two sub-
tasks: classification, which predicts whether a
target word has undergone a semantic shift, and
ranking, which orders words according to the
degree of their semantic change. While most
prior studies concentrated on ranking subtask,
the classification subtask plays an equally im-
portant role, since many practical scenarios re-
quire a yes/no decision on semantic change
rather than a global ranking. In this work, we
propose a novel statistical method that predicts
the presence or absence of semantic change.
While most existing approaches infer semantic
change by comparing word embeddings across
time periods or domains, our method directly
models the diachronic/synchronic consistency
of usage-level similarity scores. Our experi-
ments on SemEval-2020 Task 1 and WUGS
datasets demonstrate that the proposed for-
mulation outperforms existing state-of-the-art
embedding-based methods, and robustly de-
tects semantic change across languages in both
diachronic and synchronic settings.1

1 Introduction

The meanings of words naturally evolve over time
and across domains. Detecting such semantic
change is essential for linguistic and lexicographic
research, as well as for studying cultural and soci-
etal dynamics (Traugott and Dasher, 2001; Cook
and Stevenson, 2010). Beyond these humanities-
oriented applications, recent work has highlighted
the importance of semantic change detection for
various additional purposes, including information
retrieval (Kutuzov et al., 2018) and efficient updat-
ing of masked language models (Su et al., 2022).

The Semantic Change Detection (SCD) task
aims to automatically identify words that have
undergone semantic shift. Recent shared tasks

1Source code is available at https://github.com/
a1da4/usage-similarity-polya.

Method EN DE LA SV

SGNS (Rother et al., 2020) 73.0 54.2 45.0 61.3
SGNS (Pražák et al., 2020) 62.2 75.0 70.0 67.7
BERT (Asgari et al., 2020) 70.3 75.0 55.0 74.2
Pólya (ours) 76.1 80.0 N/A 88.6

Table 1: Accuracy (in %) in SemEval-2020 Task 1
(Schlechtweg et al., 2020); our method does not rely on
word embeddings contrary to prior state-of-the-arts.

such as SemEval-2020 Task 1 (Schlechtweg et al.,
2020) and the WUGS (Schlechtweg et al., 2021)
framework have established benchmark datasets
and evaluation protocols for this task. There are
two subtasks in SCD: classification, which predicts
whether a target word is semantically changed, and
ranking, which orders target words according to
the degree of semantic change (Schlechtweg et al.,
2020). Due to the unsupervised nature of the prob-
lem, most prior studies have focused on the rank-
ing subtask, evaluating models based on similarity
scores derived from word embeddings across two
periods/domains (Rosin et al., 2022; Rosin and
Radinsky, 2022; Cassotti et al., 2023; Periti and
Tahmasebi, 2024; Aida and Bollegala, 2024). How-
ever, ranking-based evaluation has inherent lim-
itations, including limited interpretability of raw
similarity scores and uncertainty about which parts
of the ranked list are reliable. These issues motivate
a stronger emphasis on the classification subtask.

In this work, we propose a new method that
statistically determines whether a word has un-
dergone semantic change by assessing the di-
achronic/synchronic consistency of a set of usage-
level similarity scores. We consider SCD under
the assumption that usage-level similarity scores
are available, as is the case in current benchmark
datasets such as SemEval-2020 Task 1 and WUGS,
where these scores are provided via human annota-
tions. Rather than addressing how such similarity
scores should be predicted, our focus is on how se-
mantic change can be statistically determined once
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usage-level similarity information is given. This de-
sign choice allows us to study SCD independently
of specific similarity estimation methods. To this
end, our framework models these similarity distri-
butions using the Pólya distribution, enabling us
to test whether the scores from two time periods
are likely to originate from the same underlying
distribution (indicating semantic stability) or from
distinct distributions (indicating semantic change).

2 Related Work

Both classification and ranking evaluations in
the SemEval-2020 Task 1 (Schlechtweg et al.,
2020) are derived from WUGS-style annotation
graphs (Schlechtweg et al., 2021), which are con-
structed by collecting a fixed number of usage ex-
amples from two different time periods/domains
for each target word. After that, human annota-
tors rate pairs of usages on a four-point semantic
similarity scale (Schlechtweg et al., 2018, 2024),
and the weighted graph is processed to obtain both
binary labels and continuous scores representing its
degree of semantic change. These resources have
provided a baseline for evaluating SCD systems.

Methods for SCD generally rely on compar-
ing static (Kim et al., 2014; Kulkarni et al., 2015;
Yao et al., 2018; Aida et al., 2021) or contextual-
ized (Hu et al., 2019; Giulianelli et al., 2020; Rosin
et al., 2022; Rosin and Radinsky, 2022; Cassotti
et al., 2023; Aida and Bollegala, 2024) word em-
beddings. Despite these advances, existing meth-
ods focus on the ranking subtask, in part because
similarity-based metrics naturally yield ordered
scores. Therefore, open fundamental challenges
in binary decision-making still remain.

3 Method

In this work, we also leverage the WUGS-style
dataset described above. For a given word (e.g.,
plane), we collect N usages from texts in period A
(e.g., ‘in the horizontal plane’) and M usages from
period B (e.g., ‘the plane was in flight’).

We construct a matrix X of size (N+M)× (N+
M) over all possible pairs of these (N+M) usages,
as shown in Figure 1, where some of its entries xij
are given a similarity score 1 through 4 between
usage i and usage j. We consider two cases with
this matrix:

Without sense change. In this case, there is no
distinction between the entries xij in X and thus
all the annotated scores could be assumed to be

X =



1 N N+1 N+M
1 4 2

4 3 3 4
2 2

N 1 2

N+1 1 4 4 1
2

2 2 3
N+M 3 4


Figure 1: Example of the score matrix X of usage simi-
larities. Some of the usage pairs are annotated to have
similarity scores, 1–4 in this case.

generated from the same underlying distribution
p=(p1, p2, p3, p4) over the scores 1 through 4:

xij ∼ p0 i.i.d. (1 ≤ i, j ≤ N+M) (1)

With sense change. If there is a semantic change
between the periods A and B, the similarity score
over the pairs of usages within the same period or
between the different periods will differ. Therefore,
entry xij is assumed to generated from one of the
four distinct distributions pn (n=1, · · · , 4) for the
associated block of X delineated in Figure 1.

xij ∼


p1 (1 ≤ i, j ≤ N)
p2 (1 ≤ i ≤ N,N+1 ≤ j ≤ N+M)
p3 (N+1 ≤ i ≤ N+M, 1 ≤ j ≤ N)
p4 (N+1 ≤ i, j ≤ N+M)

(2)

As a generative model we need a prior for
p= p0,p1, · · · ,p4, and the simplest choice is a
Dirichlet distribution

p(p) =
Γ(

∑
k αk)∏

k Γ(αk)

K∏
k=1

pαk−1
k (3)

where K = 4 in our case and α = (α1, · · · , αK)
is a hyperparameter for this prior distribution. We
employed α=(1, · · · , 1), i.e., uniform distribution
over probability simplex, throughout this study.

Let a binary latent variable θ denote whether
there is no semantic change (θ = 0) or there is a
change (θ=1). Then the likelihood of the data X
when θ = 0 is given as follows:

p(X|θ=0) = p(X) =

∫
p(X|p)p(p)dp

=

∫ ∏
i,j

K∏
k=1

p
I(xij=k)
k ·

Γ(
∑

k αk)∏
k Γ(αk)

K∏
k=1

pαk−1
k dp

=
Γ(

∑
k αk)

Γ(L+
∑

k αk)

K∏
k=1

Γ(αk+nk)

Γ(αk)
(4)



where nk =
∑

ij I(xij = k) is the frequency of
score k in X and L is the number of annotated
entries.

This formula (4) is known as a Pólya distribution
(Minka, 2000; Murphy, 2022). For the case seman-
tic change, the likelihood is a product of block-wise
Pólya distributions according to the Equation (2):

p(X|θ=1) =
4∏

n=1

p(Xn) (5)

Here, each Xn (n=1, · · · , 4) is a submatrix of X
defined by Equation (2), and nk and L are similarly
computed within each Xn. Therefore, when p(θ=
0) = p(θ=1) = 1/2, we can compute a posterior
probability of θ as follows:

p(θ|X) ∝ p(X|θ)p(θ) ∝
{
p(X|θ=0)
p(X|θ=1)

(6)

where p(X|θ = 0) and p(X|θ = 1) are given by
Equations (4) and (5), respectively. Intuitively
speaking, this probability measures whether the
observed score matrix is homogeneous or not.

4 Experiments

Datasets We evaluate our method on two bench-
mark resources: SemEval-2020 Task 1 and a subset
of the WUGS datasets.2

Evaluation We evaluate all methods using Ac-
curacy, following the standard classification pro-
tocol adopted in the WUGS framework. Each
target word is labeled as stable or changed, and
predictions are compared to gold-standard WUGS-
derived binary labels.

Baselines For SemEval-2020 Task 1, we com-
pare our proposal against the three best-performing
systems for each language reported in the shared
task (Rother et al., 2020; Pražák et al., 2020; Asgari
et al., 2020). All of these baselines rely on static
or contextualized word embeddings. For WUGS
datasets, where system outputs are not directly com-
parable across languages or domains, we adopt a
simple baseline: MostFreq, which predicts the ma-
jority class (stable or changed) for each dataset.

Proposed Method To provide intuition for our
method in practice, we illustrate how the proposed

2Datasets are available at https://www.ims.
uni-stuttgart.de/en/research/resources/
experiment-data/wugs/. We select only datasets
with usage-usage similarity annotations, since our method
requires similarity-score distributions.

(a) “Attack”

(b) “Plane”

Figure 2: Visualization of score matrices for attack and
plane. Attack represents a word whose meaning has
not changed, whereas plane represents a word that has
undergone semantic change. In each graph, instances
indexed from 0–99 correspond to the earlier period,
and those from 100–199 correspond to the later period.
Annotations are assigned on a scale from 1 (Unrelated)
to 4 (Identical), while 0 indicates no annotation or an
unknown label (Schlechtweg et al., 2021).

decision rule behaves on individual targets. Fig-
ure 2 shows the score matrices for attack (a se-
mantically stable word) and plane (a semantically
changed word).3 This figure highlights a key in-
tuition behind our method: for semantically sta-
ble/changed words, the score matrix tends to be ho-
mogeneous/heterogeneous. The prediction is made
by comparing the log-likelihoods under the Stable
and Changed hypotheses (we predict Changed
when p(X|θ = 1) > p(X|θ = 0)). For attack,
we obtain log p(X|θ = 0) = −6213.9 and log
p(X|θ = 1) = −6282.8, so the model favors the
Stable hypothesis; the gold label is Stable. For

3The cross-shaped pattern in Figure 2a reflects the
WUGS annotation procedure, which prioritizes informa-
tive usage pairs rather than annotating all pairs exhaus-
tively (Schlechtweg et al., 2021). As a result, some usages are
compared with many others, while many entries remain unan-
notated (0), producing the observed cross-shaped structure.

https://www.ims.uni-stuttgart.de/en/research/resources/experiment-data/wugs/
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https://www.ims.uni-stuttgart.de/en/research/resources/experiment-data/wugs/


Data Language Grouping 1 Grouping 2 Accuracy (%)
MostFreq Pólya

DWUG EN EN 1810–1860 1960–2010 54.3 76.1
DWUG EN Resampled EN 1810–1860 1960–2010 60.0 80.0
DWUG DE DE 1800–1899 1946–1990 60.0 80.0
DWUG DE Resampled DE 1800–1899 1946–1990 60.0 73.3
DiscoWUG DE 1800–1899 1946–1990 51.0 72.0
RefWUG DE 1750–1800 1850–1900 54.5 45.5
DURel DE 1750–1800 1850–1900 63.6 63.6
SURel DE general domain specific 63.6 68.2
RuSemShift 1 RU 1682–1916 1918–1990 77.5 77.5
RuSemShift 2 RU 1918–1990 1991–2016 62.3 62.3
RuShiftEval 1 RU 1700–1916 1918–1990 74.8 74.8
RuShiftEval 2 RU 1918–1990 1992–2016 70.3 70.3
RuShiftEval 3 RU 1700–1916 1992–2016 68.5 68.5
DWUG ES ES 1810–1906 1994–2020 55.5 78.0
DiaWUG ES Spanish variant 1 Spanish variant 2 65.6 81.3
DWUG SV SV 1790–1830 1895–1903 68.1 88.6
DWUG SV Resampled SV 1790–1830 1895–1903 60.0 73.3
ChiWUG ZH 1954–1978 1979–2003 57.5 52.5
DWUG IT IT 1948–1970 1990–2014 69.2 N/A
DWUG LA LA −200–0 0–2000 55.5 N/A
NorDiaChange 1 NO 1929–1965 1970–2013 67.5 75.0
NorDiaChange 2 NO 1980–1990 2012–2019 77.5 70.0

Table 2: Results on WUGS datasets. For each dataset, we report accuracy for the MostFreq baseline and our Pólya-
based method. The proposed approach yields strong performance across languages and dataset types, demonstrating
robustness in both diachronic and synchronic SCD.

plane, we obtain log p(X|θ=0) = −7427.2 and
log p(X|θ=1) = −7095.6, leading the model to
favor the Changed hypothesis; the gold label is
Changed. These examples illustrate the qualitative
behavior of our decision rule and provide intuition
for the quantitative results presented next.

Results Table 1 summarizes the results on
SemEval-2020 Task 1. Despite not relying on any
word embeddings, our method achieves higher ac-
curacy than all embedding-based state-of-the-art
systems in three out of four languages, demonstrat-
ing the effectiveness of modeling temporal con-
sistency in usage similarity distributions. To as-
sess the robustness of our framework beyond the
SemEval setting, Table 2 presents results on the
WUGS datasets. Our method consistently attains
strong accuracy across all languages and performs
robustly in both diachronic and synchronic settings.
These findings indicate that the proposed frame-
work generalizes well beyond the SemEval datasets
and is applicable to diverse languages and domains.

Discussion and Future Work Although our ex-
periments rely on human usage-similarity annota-
tions, recent studies suggest that high-quality labels
can be obtained easily through automatic meth-
ods. The DURel Annotation Tool (Schlechtweg
et al., 2024) already integrates XL-LEXEME (Cas-

sotti et al., 2023) to automatically propose usage-
similarity annotations. Moreover, Periti and Tah-
masebi (2024) show that contextualized embedding
models and large language models can generate an-
notation labels that approach the quality of human
annotations. These developments indicate that our
statistical framework may be deployed in a fully au-
tomatic setting in the future, where usage-similarity
labels are predicted rather than manually collected.

5 Conclusion

We proposed a statistical framework for lexical se-
mantic change detection that models temporal con-
sistency in usage-similarity score distributions. By
evaluating whether the observed similarity struc-
ture is better explained by a single sense distri-
bution or by distinct distributions across periods,
our method provides a simple yet effective decision
rule. Experiments on SemEval-2020 Task 1 and the
WUGS datasets show that our approach achieves
competitive or superior accuracy across languages
and settings. These findings demonstrate that mod-
eling usage-level similarity scores enables effective
detection of semantic change. Together with recent
advances in automatically predicting high-quality
similarity labels, our framework offers a promis-
ing path toward fully automatic and interpretable
semantic change detection.
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