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Humans perceive continuous high-dimensional information by dividing it into meaningful

segments, such as words and units of motion. We believe that such unsupervised

segmentation is also important for robots to learn topics such as language and

motion. To this end, we previously proposed a hierarchical Dirichlet process–Gaussian

process–hidden semi-Markov model (HDP-GP-HSMM). However, an important

drawback of this model is that it cannot divide high-dimensional time-series data.

Furthermore, low-dimensional features must be extracted in advance. Segmentation

largely depends on the design of features, and it is difficult to design effective

features, especially in the case of high-dimensional data. To overcome this problem,

this study proposes a hierarchical Dirichlet process–variational autoencoder–Gaussian

process–hidden semi-Markov model (HVGH). The parameters of the proposed HVGH

are estimated through a mutual learning loop of the variational autoencoder and

our previously proposed HDP-GP-HSMM. Hence, HVGH can extract features from

high-dimensional time-series data while simultaneously dividing it into segments in

an unsupervised manner. In an experiment, we used various motion-capture data to

demonstrate that our proposed model estimates the correct number of classes and

more accurate segments than baseline methods. Moreover, we show that the proposed

method can learn latent space suitable for segmentation.

Keywords: motion segmentation, Gaussian process, variational autoencoder, hidden semi-Markov model, motion

capture data, high-dimensional time-series data

1. INTRODUCTION

Humans perceive continuous high-dimensional information by dividing it into meaningful
segments, such as words and units of motion. For example, we recognize words by segmenting
speech waves, and we perceive particular motions by segmenting continuous motion. Humans
learn words and motions by appropriately segmenting continuous information without explicit
segmentation points. We believe that such unsupervised segmentation is also important for robots,
in order for them to learn language and motion.
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In this paper, we define the segments as arbitrary temporal
patterns that appear multiple times in the time-series data.
Additionally, we have proposed a method to extract the segments
by capturing such a nature stochastically. One of our previous
methods is the hierarchical Dirichlet process–Gaussian process–
hidden semi-Markov model (HDP-GP-HSMM) (Nagano et al.,
2018). HDP-GP-HSMM is a non-parametric Bayesian model that
is a hidden semi-Markov model, the emission distributions of
which are Gaussian processes (MacKay, 1998), and it facilitates
the segmentation of time-series data in an unsupervised manner.
In this model, segments are continuously represented using a
Gaussian process. Moreover, the number of segmented classes
can be estimated using hierarchical Dirichlet processes (Teh et al.,
2006). The Dirichlet processes assume an infinite number of
classes. However, only a finite number of classes are actually used.
This is accomplished by stochastically truncating the number of
classes using a slice sampler (Van Gael et al., 2008).

However, our HDP-GP-HSMM cannot handle high-
dimensional data, and feature extraction is required to reduce
the dimensionality in advance. Indeed, segmentation largely
depends on this feature extraction, and it is difficult to extract
effective features, especially in the case of high-dimensional data.
To overcome this problem, this study introduces a variational
autoencoder (VAE) (Kingma et al., 2013) to HDP-GP-HSMM.
Thus, the model we propose in this paper is a hierarchical
Dirichlet process–variational autoencoder–Gaussian process–
hidden semi-Markov model (HVGH1). Figure 1 shows an
overview of HVGH. The observation sequence is compressed
and converted into a latent variable sequence by the VAE,
and the latent variable sequence is divided into segments by
HDP-GP-HSMM. Furthermore, parameters learned by HDP-
GP-HSMM are used as the hyperparameters for the VAE. In this
way, the parameters are optimized in a mutual learning loop, and
appropriate latent space for segmentation can be learned by the
VAE. In experiments, we evaluated the efficiency of the proposed
HVGH using real motion-capture datasets. The experimental
results show that HVGH achieves a higher accuracy compared to
baseline methods.

Many studies on unsupervised motion segmentation have
been conducted. However, heuristic assumptions are used in
many of them (Lioutikov et al., 2015;Wächter et al., 2015; Takano
et al., 2016). Wächter et al. proposed a method for segmenting
object-manipulation motion in robots and used contact between
the end-effector and the object as a segmentation clue (Wächter
et al., 2015). Lioutikov et al. proposed a method that requires
candidates for the segmentation points in advance (Lioutikov
et al., 2015). In addition, the method proposed by Takano
et al. used errors between the predicted and actual values as
criteria for segmentation (Takano et al., 2016). Moreover, some
methods use motion features such as the zero velocity of joint
angles (Fod et al., 2002; Shiratori et al., 2004; Lin et al., 2012).
However, this assumption typically induces over-segmentation
(Lioutikov et al., 2015).

1HVGH stands for hierarchical Dirichlet process, variational autoencoder,
Gaussian process, and hidden semi-Markov model.

Furthermore, studies have proposed methods of detecting
change points in time-series data in an unsupervised manner
(Yamanishi et al., 2002; Lund et al., 2007; Liu et al., 2013; Haber
et al., 2014). These are the methods of finding points with
different fluctuations based on previous observations. Therefore,
thesemethods assume that similar temporal patterns are repeated
between the change points. On the other hand, in this study, we
consider that the segments comprise not only repeated patterns
but also an arbitrary pattern. Thus, the change points do not
necessarily indicate the segment boundaries.

In some studies, segmentation is formulated stochastically
using hidden Markov models (HMMs) (Beal et al., 2002; Fox
et al., 2011; Taniguchi et al., 2011; Matsubara et al., 2014).
However, it is difficult for HMMs to represent complicated
motion patterns. Instead, we use Gaussian processes in
our model, which is a type of non-parametric model that
can better represent complicated time-series data compared
to HMMs. Figure 2B shows how an HMM represents the
trajectory of data points shown in Figure 2A. The HMM
represents the trajectory using five Gaussian distributions.
However, one can see that the details of the trajectory are
lost. On the other hand, in HDP-GP-HSMM (Figure 2C), the
trajectory can be represented continuously using two Gaussian
processes (GPs). We confirmed that our GP-based model can
estimate segments more accurately than HMM-based methods
(Nagano et al., 2018).

In some studies, the number of classes is estimated by
introducing a hierarchical Dirichlet process (HDP) into anHMM
(Beal et al., 2002; Fox et al., 2007). An HDP is a method of
estimating the number of classes by assuming an infinite number
of classes. Fox et al. extended an HDP–HMM to develop a so-
called sticky HDP-HMM, which prevents over-segmentation by
increasing the self-transition probability (Fox et al., 2007).

Among methods of combining statistical models with neural
networks, a method of classifying complicated data using a GMM
and VAE was proposed (Johnson et al., 2016). In contrast, our
proposed HVGH is a model that combines a statistical model
with a VAE for segmenting high-dimensional time-series data.

2. HIERARCHICAL DIRICHLET
PROCESS–VARIATIONAL
AUTOENCODER–GAUSSIAN
PROCESS–HIDDEN SEMI-MARKOV
MODEL (HVGH)

Figure 3 shows a graphical model of our proposed HVGH,
which is a generative model of time-series data. In this model,
cj(j = 1, 2, · · · ,∞) denotes the classes of the segments, where
the number of classes is assumed to be countably infinite.
β denotes an infinite-dimensional multinomial distribution,
which is generated from the GEM distribution (Pitman, 2002),
parameterized by γ . GEM denotes the co-authors Griffiths,
Engen, and McCloskey—with the so-called stick-breaking
process (SBP) (Sethuraman, 1994). The probability π c denotes
the transition probability, which is generated by the Dirichlet
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FIGURE 1 | Overview of the generative process of the HVGH.

FIGURE 2 | Representing a trajectory: (A) Observed data points, (B) representation by HMM, and (C) representation by HDP-GP-HSMM.

process (Teh et al., 2006), parameterized by β :

β ∼ GEM(γ ), (1)

π c ∼ DP(η,β). (2)

γ and η are the concentration parameters of the Dirichlet
processes; the smaller the value of the concentration parameter,
the sparser the generated distribution is. The process by
which the probability distribution is constructed through a
two-phase Dirichlet process is called a hierarchical Dirichlet
process (HDP) (Teh et al., 2006). HDP is described in detail in
Nagano et al. (2018).

The class cj of the j-th segment is determined by the class of the
(j− 1)-th segment and transition probability π c. The segment of
latent variables Zj is generated by a Gaussian process (MacKay,

1998) with the parameter φc as follows:

cj ∼ P(c|cj−1,π c), (3)

Zj ∼ GP(Z|φcj ), (4)

where φc represents the parameter of the Gaussian process
corresponding to the class c and is a set of segments classified
into the class c in the learning phase. The segment Xj is generated
from the segment of the latent variables Zj by using the decoder
pdec of the VAE:

Xj ∼ pdec(X|Zj). (5)

The observed sequence s = X1,X2, · · · ,XJ is assumed to be
generated by connecting segments Xj sampled by the above
generative process. Similarly, the sequence of the latent variables
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s̄ = Z1,Z2, · · · ,ZJ is obtained by connecting the segments of the
latent variables Zj. In this paper, the i-th data point included in
Xj is described as xji, and the i-th data point included in Zj is
described as zji. If the characters represent what they obviously
are, we omit their subscripts.

The generative process of the observed sequence s described
above is summarized in Algorithm 1. This pseudo code
represents the generative process, and it is difficult to directly
implement this code because the number of classes is infinite. The
details on how to address this problem are described in section 3.

2.1. Gaussian Process (GP)
In this paper, each class represents a continuous trajectory by
learning the emission zi of time step i using a Gaussian process
(MacKay, 1998). In the Gaussian process, given tc and ic, which
are the vectors of the latent variable zi that is classified into
class c and its time step i, respectively (details are explained
later), the predictive distribution of ẑ of time step î is a Gaussian

FIGURE 3 | Graphical model of HVGH. The white nodes represent

unobserved variables, and the gray node represents the high-dimensional

observed sequence that is obtained by concatenating segments.

Algorithm 1: Generative process of s by HVGH

1: Draw β ∼ GEM(γ )
2: for c = 1, · · · ,∞ do

3: Draw π c ∼ DP(η,β)
4: end for

5:

6: s = ǫ (an empty sequence)
7: for j = 1, · · · , J do
8: Draw cj ∼ P(cj|cj−1,π c),
9: Draw Zj ∼ GP(Zj|φcj ),
10: Draw Xj ∼ pdec(Xj|Zj),
11: Append Xj to s.
12: end for

distribution with the parameters µ and σ 2:

p(ẑ|î,φc) ∝ N (z|µ, σ 2), (6)

µ = k
T
C
−1

tc, (7)

σ 2 = ρ − k
T
C
−1

k. (8)

Here, C is a matrix having the following elements:

C(ip, iq) = k(ip, iq)+ ω
−1δpq, (9)

where k(·, ·) denotes the kernel function and ω denotes a
hyperparameter that represents noise in the observations. k is a
vector with the elements k(ip, î), and ρ is k(î, î). φc represents a set
of the segments of latent variables that are classified into the class
c, and tc and ic are the vectors where a respective latent variable
zi and time step i in φc are arranged. For example, assuming that
the latent variables have one dimension, and segments Z1,Z2, · · ·
are classified into class c, we can compute tc and ic as follows:

φc = {Z1,Z2, · · · } = {{z11, z12, z13, · · · }, {z21, z22, z23, · · · }, · · · },
(10)

tc = [z11, z12, z13, · · · , z21, z22, z23, · · · ]
T , (11)

ic = [1, 2, 3, · · · 1, 2, 3, · · · ]T . (12)

Once tc and ic are computed, they are shared to compute the
probability of (ẑ, î) being classified into class c. A Gaussian
process can represent complicated time-series data owing to the
kernel function. In this paper, we used the following kernel
function:

k(ip, iq) = θ0 exp(−
1

2
θ1||ip − iq||

2)+ θ2 + θ3ipiq, (13)

where θ∗ denotes the parameters of the kernel, which are fixed
for all classes in our experiments. The reason why we select
this kernel is that the motions are generally smooth and, hence,
we consider the latent variable to also be temporally smooth.
Figure 4 illustrates the samples from various kernels: linear,
exponential, periodic, and radial basic function (RBF) kernels
(Bishop, 2006). As can be observed in this figure, it is difficult
for the linear and periodic kernels to represent a non-linear and
non-periodic pattern, and the sample of the exponential kernel is
not smooth. On the other hand, the RBF kernel can represent a
smooth temporal pattern. Therefore, we use the kernel based on
the RBF kernel, which is generally used for Gaussian processes
(Bishop, 2006). However, it is not evident as to which kernel is
the most appropriate. Moreover, the appropriate kernel depends
on the task. This issue will be considered in future work because
it exceeds the scope of this paper.

Additionally, if the observations are composed of
multidimensional vectors, we assume that each dimension is
independently generated. Therefore, the predictive distribution
GP(z|φc) by which the emission z = (z(1), z(2), · · · ) of time step
i is generated using a Gaussian process of class c is computed as
follows:

GP(z|φc) = p(z(1)|i,φc,1)p(z
(2)|i,φc,2)p(z

(3)|i,φc,3) · · · (14)

= N (z(1)|µ1, σ
2
1 )N (z(2)|µ2, σ

2
2 )N (z(3)|µ3, σ

2
3 ) · · ·

(15)
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FIGURE 4 | Four temporal patterns sampled from the Gaussian processes, where (A) linear : ip iq, (B) exponential : exp(−|ip − iq|), (C) periodic : exp(cos |ip − iq|), and

(D) RBF : exp(−|ip − iq|
2) are used.

By using this probability, the latent variables can be classified into
the classes. Moreover, because each dimension is independently
generated, the mean vector µc(i) and the variance–covariance
matrix6c(i) of GP(zji|φc) are represented as follows:

µc(i) = (µ1,µ2,µ3, · · · ), (16)

6c(i) =






σ 2
1 0 0
0 σ 2

2 0

0 0
. . .




 , (17)

where (µ1,µ2,µ3, · · · ) and (σ 2
1 , σ

2
2 , σ

2
3 , · · · ), respectively,

represent the mean and variance of each dimension. HVGH is a
model in which the VAE and GP influence each other mutually
with the use of µc(i) and 6c(i) as the prior distribution of
the VAE.

2.2. Overview of the Variational
Autoencoder
In this paper, we compress a high-dimensional time-series
observation into low-dimensional latent variables using the VAE
(Kingma et al., 2013). The VAE is a neural network that can learn
the correspondence between a high-dimensional observation x

and the latent variable z. Generally, in a probabilistic model, the
posterior distribution of z can be expressed as follows:

p(z|x) =
pdec(x|z)p(z)

p(x)
. (18)

However, if a neural network that has expressive power is used
for the generative model pdec(x|z), Equation (18) cannot be
analytically derived. To solve this problem, in the VAE, p(z|x)
is approximated by qenc(z). Figure 5 shows an overview of the
VAE. A Gaussian distribution with a mean µenc(x) and variance

FIGURE 5 | Overview of the variational autoencoder (VAE). The

low-dimensional latent variable z j is obtained by compressing the observed

data point xj through the encoder network. x′j is an observation reconstructed

by the decoder from the latent variable z j .

6enc(x) that are estimated by using encoder networks from input
x is used as qenc(z):

qenc(z) = N (z|µenc(x),6enc(x)). (19)

The latent variable z is stochastically determined by this
distribution, and x

′ is generated through decoder networks pdec:

z ∼ qenc(z), (20)

x
′ ∼ pdec(x|z). (21)

The parameters of the encoder and decoder are determined
to maximize the likelihood by using the variational Bayesian
method. Generally, the prior distribution of the VAE is a
Gaussian distribution, the mean of which is the zero vector
0, and the variance–covariance matrix is the identity matrix e.
On the other hand, HVGH uses a Gaussian distribution whose
parameters are µc(i) and 6c(i) of class c into which zji is
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classified. As a result, latent space suitable for segmentation can
be constructed. By using this VAE, a sequence of the observation
s = X1,X2, · · · ,XJ is converted into a sequence of the latent
variables s̄ = Z1,Z2, · · · ,ZJ through the encoder.

3. PARAMETER INFERENCE

The log likelihood of HVGH is expressed as follows:

log p(X1, · · · ,XJ , c1, · · · , cJ) (22)

= log
∏

j

∫

Zj

p(Zj, cj)p(Xj|Zj)dZj (23)

= log
∏

j

∫

Zj

GP(Zj|φc)P(cj|cj−1,π c)

︸ ︷︷ ︸

HDP−GP−HSMM

p(Xj|Zj)

︸ ︷︷ ︸

VAE

dZj. (24)

In Equation (24), the first and second factors are computed
in HDP-GP-HSMM, and the third factor is computed in VAE.
It is difficult to directly maximize Equation (22); therefore,
HDP-GP-HSMM and the VAE are alternately optimized, and
the parameters that approximately maximize Equation (22)
are computed. Figure 6 depicts an outline of the parameter
estimation for HVGH. A sequence of observations s =

X1,X2, · · · ,XJ is converted into a sequence of latent variables
s̄ = Z1,Z2, · · · ,ZJ by the VAE. Then, through HDP-GP-HSMM,
the sequence of latent variables s̄ is divided into segments of
latent variables Z1,Z2, · · · ,ZJ , and the parameters µc(i) and
6c(i) of the predictive distribution of z are computed. This
predictive distribution is used as a prior distribution of the
VAE. Thus, the parameters of the VAE and HDP-GP-HSMM are
mutually optimized.

FIGURE 6 | Overview of parameter estimation for HVGH. The parameters are

learned by a mutual learning loop of the VAE and HDP-GP-HSMM.

3.1. Parameter Inference of
HDP-GP-HSMM
3.1.1. Blocked Gibbs Sampler
In HDP-GP-HSMM, segments and classes of latent variables are
determined by sampling. For efficient estimation, we utilize a
blocked Gibbs sampler (Jensen et al., 1995), in which all segments
and their classes in one observed sequence are sampled. First,
all sequences of the latent variables are randomly divided into
segments and randomly classified into classes. Next, the segments
of latent variables Znj(j = 1, 2, · · · , Jn) obtained by segmenting
the n-th sequence s̄n are excluded from the training data,
and the parameters of the Gaussian process φc and transition
probabilities P(c|c′) are updated. The segments of latent variables
and their classes are sampled as follows:

(Zn,1, · · · ,Zn,Jn ), (cn,1, · · · , cn,Jn ) ∼ p((Z1,Z2, · · · ,ZJ),

(c1, c2, · · · , cJ)|s̄n). (25)

The parameters of the Gaussian process of each class φc and
transition probability P(c|c′) are updated by using the sampled
segments and their classes. The parameters are optimized by
iterating this procedure. Algorithm 2 is the pseudo code of the
blocked Gibbs sampler. Ncnj and Ncnj ,cn,j+1 are parameters to
compute the transition probability in Equation (29). However, it
is difficult to compute Equation (25) because an infinite number
of classes is assumed. To overcome this problem, we use a
slice sampler to compute these probabilities by stochastically
truncating the number of classes.

Moreover, the probabilities of all possible patterns of segments
and classifications are required in Equation (25), and these
cannot be computed naively owing to the large computational
cost. To compute Equation (25) efficiently, we utilize forward
filtering–backward sampling (Uchiumi et al., 2015).

3.1.2. Slice Sampler
In the HDP, we assumed that the number of classes is countably
infinite. However, it is difficult to compute Equation (25) because
c can have infinite possibilities. To overcome this problem, we use

Algorithm 2: Blocked Gibbs Sampler

1: Repeat until convergence
2: for n = 1 to N do

3: for j = 1 to Jn do
4: Ncnj− = 1
5: Ncnj ,cn,j+1− = 1
6: Delete segments Znj from φcnj
7: end for

8: // Sampling segments and their classes
9: Zn∗, cn∗ ∼ p(Z∗, c∗|sn)
10: for j = 1 to Jn do
11: Ncnj ++

12: Ncnj ,cn,j+1 ++

13: Append segments Znj to φcnj
14: end for

15: end for
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a slice sampler (Van Gael et al., 2008) to stochastically truncate
the number of classes. In the slice sampler, an auxiliary variable
uj that follows the distribution for each time step j is introduced:

p(uj|cj−1, cj) =
ξ (0 < uj < πcj−1 ,cj )

πcj−1 ,cj
, (26)

where ξ (A) = 1 if condition A is true; otherwise, it is 0. By
truncating the classes with a transition probability πcj−1 ,cj that
is less than uj, the number of classes becomes finite, as shown
in Figure 7.

3.1.3. Forward Filtering–Backward Sampling
The number of classes can be truncated by slice sampling.
Consequently, forward filtering–backward sampling (Uchiumi
et al., 2015) can be applied to compute Equation (25). In forward
filtering, the probability that k samples s̄t−k : k before time step t
form a segment of class c is as follows:

α[t][k][c]

= GP(s̄t−k : k|φc)Plen(k|λ)
K

∑

k′=1

C̄
∑

c′=1

{

P(c|c′,β , η)α[t − k][k′][c′]
}

,

(27)

where C̄ denotes the maximum number of classes estimated
by slice sampling and K denotes the maximum length of

FIGURE 7 | Slice sampling truncates the number of classes by thresholding

πc′ ,c.

segments. Plen(k|λ) represents a Poisson distribution with a mean
parameter λ:

Plen(k|λ) =
λke−λ

k!
. (28)

This corresponds to the distribution of the segment lengths. In
addition, P(c|c′,β , η) is the transition probability, which can be
computed as follows:

P(c|c′,β , η) =
Nc′c + ηβc′

Nc′ + η
, (29)

where Nc′ represents the number of segments of class c and
Nc′c denotes the number of transitions from c′ to c. In addition,
k′ and c′ are the length and class of possible segments before
s̄t−k : k, respectively, and these probabilities are marginalized
out in Equation (27). Moreover, α[t][k][∗] = 0 if t − k <

0, and α[0][0][∗] = 1.0. Equation (27) can be recursively
computed from α[1][1][∗] using dynamic programming, as
shown in Figure 8A. This figure depicts an example of computing
α[t][2][2], which is the probability that the two samples before
t become a segment having the class c. In this case, the length
is two and, therefore, all the segments with end points t −

2 can potentially transit to this segment. In α[t][2][2], these
possibilities are marginalized out. Finally, the length of segments
and their classes can be sampled through backward sampling
from t = T:

k, c ∼ p(zj|st−k : t)α[t][k][c]P(cj−1|c). (30)

Figure 8B depicts an example of backward sampling. The length
of segment k1 and its class c1 are sampled from the probabilities
α[t][∗][∗]. If k1 = 2, k2 and c2 are sampled from α[t − 2][∗][∗].
By iterating this procedure until t = 0, the segments and their
classes can be determined. Algorithm 3 shows the pseudo-code
of forward filtering–backward sampling with slice sampling.

3.2. Parameter Inference of the VAE
The parameters of the encoder and decoder of VAE are estimated
to maximize the likelihood p(x). However, it is difficult to

FIGURE 8 | (A,B) Forward filtering–backward sampling.
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maximize the likelihood directly. Instead, the normal VAE
maximizes the following variational lower limit:

L(xji, zji) =

∫

qenc(zji|xji) log pdec(xji|zji)dzji

−DKL(qenc(zji|xji)||p(zji|0
¯
, e)), (31)

where
∫

qenc(zji|xji) log pdec(xji|zji)dzji represents the
reconstruction error. Moreover, p(zji|0

¯
, e) is a prior distribution

of zji, which is a Gaussian distribution whose mean is 0, and

Algorithm 3: Forward Filtering–Backward Sampling

1: // Slice sampling
2: for j = 1 to Jn do
3: uj ∼ p(uj|cj−1, cj)
4: end for

5: C̄ = maxj(count(πcj−1 ,cj > uj))
6: // Forward filtering
7: for t = 1 to T do

8: for k = 1 to K do

9: for c = 1 to C̄ do

10: Compute α[t][k][c]
11: end for

12: end for

13: end for

14: // Backward sampling
15: t = T, j = 0, c0 = 0
16: while t > 0 do

17: j = j+ 1
18: k, c ∼ p(zj|st−k : t)α[t][k][c]P(cj−1|c)
19: zj = st−k : t

20: cj = c
21: t = t − k
22: end while

23: Jn = j
24: return (zJn , zJn−1, · · · , z1), (cJn , cJn−1, · · · , c1)

the variance–covariance matrix is e. DKL(qenc(zji|xji)||p(zji|0
¯
, e))

is the Kullback–Leibler divergence, and this functions as a
regularization term. On the other hand, in HVGH, the mean
µc(i) and the variance–covariance matrix 6c(i) are used as the
parameters of the prior distribution. These are the parameters of
the predictive distribution of class c into which zji is classified,
and they are estimated by HDP-GP-HSMM:

L(xji, zji) =

∫

qenc(zji|xji) log pdec(xji|zji)dzji

−DKL(qenc(zji|xji)||p(zji|µc(i),6c(i))). (32)

Figure 9 illustrates the difference in prior distributions between
Equations (31, 32). In the normal VAE using Equation (31), the
prior distribution is N (0

¯
, e) against all data points, as shown

in Figure 9A. On the other hand, the parameters of the prior
distribution of HVGH are computed by the Gaussian process,
as shown in Figure 9B. Because the GP restricts data points that
have closer time steps to being more similar values, zji becomes
a similar value to zj,i−1 and zj,i+1. Therefore, the latent space
learned by the VAE can reflect the characteristics of time-series
data. Moreover, these parameters have different values depending
on the class of the data point. Therefore, the latent space can also
reflect the characteristics of each class.

4. EXPERIMENTS

To validate the proposed HVGH, we applied it to several types
of time-series data. For comparison, we used HDP-GP-HSMM
(Nagano et al., 2018), HDP-HMM (Beal et al., 2002), HDP-
HMM+NPYLM (Taniguchi et al., 2011), BP-HMM (Fox et al.,
2011), andAutoplait (Matsubara et al., 2014) as baselinemethods.

4.1. Experimental Setup
To evaluate the validity of the proposed method, we used the
following four motion-capture datasets.

• Chicken dance: We used a sequence of motion-capture data
of a human performing a chicken dance from the CMU

FIGURE 9 | Influence of prior distribution. The orange region represents the standard deviation. (A) The same prior distribution is used for any data points in the

normal VAE. (B) The distribution is varied depending on the time step and the class of the data point in the VAE in HVGH.
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FIGURE 10 | Four unit motions included in the chicken dance: (A) beaks, (B)

wings, (C) tail feathers, and (D) claps.

FIGURE 11 | Seven unit motions included in the “I’m a little teapot” dance: (A)

short and stout, (B) bending knee, (C) spread arms, (D) handle, (E) spout, (F)

steam up, and (G) pour.

Graphics Lab Motion Capture Database2. The dance includes
four motions, as shown in Figure 10.

• “I’m a little teapot” dance (teapot dance): We also used
two sequences from the teapot dance motion-capture data
from subject 29 in the CMU Graphics Lab Motion Capture
Database3. These sequences include seven motions, as shown
in Figure 11.

• Exercise motion 1: To determine the validity against more
complicated motions, we used three sequences of exercise
motion-capture data from subject 13 in the CMU Graphics
Lab Motion Capture Database. These sequences include seven
motions, as shown in Figure 12.

• Exercise motion 2: Furthermore, we used three sequences of
different exercises from the motion-capture data from subject
14 in the CMUGraphics LabMotion Capture Database. These
sequences include 11 motions, as shown in Figure 13.

To reduce computational cost, all the sequences were
preprocessed by down sampling to 4 fps. These motion-
capture datasets included the directions of 31 body parts, each
of which was represented by a three-dimensional Euler angle.
Therefore, each frame was constructed in 93-dimensional
vectors. We used sequences of 93-dimensional vectors as input.
Moreover, HVGH requires hyperparameters, and we set them to

2http://mocap.cs.cmu.edu/: subject 18, trial 15.
3http://mocap.cs.cmu.edu/: subject 29, trials 3 and 8.

FIGURE 12 | Seven unit motions included in exercise motion 1: (A) jumping

jack, (B) twist, (C) arm circle, (D) bend over, (E) knee raise, (F) squatting, and

(G) jogging.

λ = 14.0, θ0 = 1.0, θ1 = 1.0, θ2 = 0.0, and θ3 = 16.0, which
were empirically determined for the segmentation of the 4-fps
sequences. For the chicken dance exclusively, we set λ to half that
of the others because its motion-capture data was shorter than
the others. To train the VAE, we used 1/4 of all the data points
as a mini batch, Adam (Kingma et al., 2017) was used for the
optimization, and the optimization was iterated 150 times. To
train HDP-GP-HSMM, the blocked Gibbs sampler was iterated
10 times to converge the parameters. Furthermore, the mutual
learning loop of the VAE and HDP-GP-HSMMwas iterated until
the variational lower limit converged.

4.2. Evaluation Metrics
To evaluate the segmentation accuracy, we used four
measures: the normalized Hamming distance, precision,
recall, and F-measure.

The normalized Hamming distance represents the error rate
of the classification of the data points, and it is computed
as follows:

ND(c, c) =
D(c, c)

|c|
, (33)

where c and c, respectively, represent sequences of estimated
classes and correct classes in the data points in the observed
sequence. Moreover, D(c, c) represents the Hamming distance
between two sequences, and |c| is the length of the sequence.
Therefore, the normalized Hamming distance ranges from zero
to one, and smaller values indicate that the estimated classes are
more similar to the ground truth.

To compute the precision, recall, and F-measure, we evaluated
boundary points (boundaries between segments) as true positives
(TPs), true negatives (TNs), false positives (FPs), and false
negatives (FNs), as shown in Figure 14. A TP is assigned to
the points that are correctly estimated as boundary points. An
estimated boundary point is treated as correct if the estimated
boundary is within the error range, as shown in Figure 14, Frame
(2). The error range is defined as ±ψ% of the sequence length,
and ψ represents the percentage of the error range. A TN is
assigned to the points that are correctly estimated not to be
boundary points, as shown in Figure 14, Frame (3). Conversely,
FPs and FNs are assigned to points that are falsely estimated as
boundary points, as shown in Figure 14, Frame (10), and falsely
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FIGURE 13 | Eleven unit motions included in exercise motion 2: (A) jumping jack, (B) jogging, (C) squatting, (D) knee raise, (E) arm circle, (F) twist, (G) side reach, (H)

boxing, (I) arm wave, (J) side bend, and (K) toe touch.

FIGURE 14 | Example of segmentation evaluation: TP is assigned to the boundary (2) because the estimated boundary is within the error range from the true

boundary.

estimated not to be boundary points, as shown in Figure 14,
Frame (6), respectively. From these boundary evaluations, the
precision, recall, and F-measure are computed as follows:

P =
NTP

NTP + NFP
, (34)

R =
NTP

NTP + NFN
, (35)

F =
2P · R

P + R
, (36)

where NTP, NFP, and NFN represent the number of boundary
points estimated as TP, FP, and, FN, respectively.

Figure 15 depicts the results of a preliminary experiment to
determine the error range. The horizontal axis represents the
percentages of error range ψ , and the vertical axis represents
the average F-measures of the segmentation of four datasets used
in the experiments. The details of the datasets are described in
section 4.1. Figure 16 shows the result of the average Hamming
distance of the four datasets used in the experiments.

To support the evaluation, we used three random baseline
methods (A-C). The random baselines were computed given the
number of segments as follows: a sequence is divided into the
specified number of segments by using a uniform distribution,
and classes of the segments are randomly sampled from the
uniform distribution. The random baselines (A-C) represent the
results of baseline segmentation using the correct number of

FIGURE 15 | Variation of F-measure with the error range.

segments, double the number, and half the number, respectively.
The sequences are divided by iterating this procedure 100 times,
and the values in the figures represent the averages of the 100
segmentation trials. As shown in Figure 15, in a smaller error
range, the F-measure of the random baseline (B) is greater than
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FIGURE 16 | Hamming distance of each method.

that of the random baseline (A). This is because the number of
boundary points of the random baseline (B) is greater than that
of the random baseline (A), the more boundary points of (B)
are likely to be within the error range, and TP increases. On the
other hand, in a larger error range, the F-measure of the random
baseline (B) is less than that of the random baseline (A). This is
because themore boundary points of the random baseline (A) are
also within the error range in the case of a larger error range, and
TP increases. Moreover, the precision of the random baseline (B)
decreases and recall increases with an increase in FP because the
number of boundary points is greater than that for the random
baseline (A). In contrast, the F-measure of the random baseline
(C) is less than that of the random baseline (A). This is because
precision increases and recall decreases with an increase in FN.
In the case of the percentages of error range where the F-measure
is saturated, the F-measure is lower in both cases in which the
number of segments is larger or smaller because of the trade-off
relationship between recall and precision. These results indicate
that F-measure reflects the accuracy of boundary points as well
as the correctness of the number of segments. From Figure 15,
we can see that the F-measure begins to saturate at the 5% error
range in all methods except for the random baselines; therefore,
we use a 5% error range in the subsequent experiments.

4.3. Segmentation of Motion-capture Data
First, we applied baseline methods to the 93-dimensional
time-series data. However, the baseline methods were
not able to segment the 93-dimensional time-series data
appropriately, because of high dimensionality. Therefore, we
applied the VAE with the same parameters as HVGH, and
sequences of three-dimensional latent variables were used for
segmentation of the baseline methods. Tables 1–4 show the
results of segmentation on each of the four motion-capture
datasets. The random baselines in the tables indicate the
results of the random segmentation, which are described
in section 4.2.

VAE+HDP-GP-HSMM and VAE+BP-HMM were able to
segment the motion-capture data from the chicken dance and
teapot dance. However, in the results with exercise motion

TABLE 1 | Segmentation results for the chicken dance.

Hamming

distance

PrecisionRecall F-

measure

# of estimated

classes

HVGH 0.23 0.86 0.86 0.86 4

VAE +

HDP-GP-HSMM

0.31 1.0 0.71 0.83 4

VAE + HDP-HMM 0.73 0.15 1.0 0.26 11

VAE +

HDP-HMM+NPYLM

0.74 0.85 0.79 0.81 15

VAE + BP-HMM 0.33 1.0 0.86 0.92 3

VAE + Autoplait 0.66 0.0 0.0 0.0 1

Random baseline (A) 0.55 0.55 0.41 0.47 4

Random baseline (B) 0.51 0.45 0.69 0.54 4

Random baseline (C) 0.60 0.64 0.20 0.30 3

TABLE 2 | Segmentation results for the teapot dance.

Hamming

distance

PrecisionRecall F-

measure

# of estimated

classes

HVGH 0.31 0.74 0.83 0.79 7

VAE +

HDP-GP-HSMM

0.36 0.80 0.71 0.75 8

VAE + HDP-HMM 0.75 0.10 1.0 0.17 16

VAE +

HDP-HMM+NPYLM

0.61 0.58 1.0 0.74 21

VAE + BP-HMM 0.34 0.50 0.86 0.63 10

VAE + Autoplait 0.75 0.0 0.0 0.0 1

Random baseline (A) 0.59 0.54 0.46 0.49 6

Random baseline (B) 0.59 0.42 0.72 0.53 7

Random baseline (C) 0.65 0.59 0.21 0.31 5

TABLE 3 | Segmentation results for the exercise motion 1: subject 13.

Hamming

distance

PrecisionRecall F-

measure

# of estimated

classes

HVGH 0.27 0.66 0.93 0.75 14

VAE +

HDP-GP-HSMM

0.41 0.53 0.93 0.67 11

VAE + HDP-HMM 0.79 0.05 1.0 0.09 10

VAE +

HDP-HMM+NPYLM

0.76 0.32 1.0 0.48 34

VAE + BP-HMM 0.57 0.29 1.0 0.45 7

VAE + Autoplait 0.76 0.0 0.0 0.0 2

Random baseline (A) 0.60 0.45 0.38 0.41 7

Random baseline (B) 0.59 0.36 0.62 0.46 7

Random baseline (C) 0.64 0.51 0.21 0.29 5

obtained using VAE+BP-HMM, the value of the normalized
Hamming distance was larger and the F-measure was smaller
than those for the dance motions. This is because simple and
discriminative motions were repeated in the chicken dance and
teapot dance. Therefore, BP-HMM, which is an HMM-based
model, was able to segment them. In contrast, the Gaussian
process used in HVGH and HDP-GP-HSMM is non-parametric,
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making it possible to represent complicated motion patterns
in the exercise data. Moreover, HVGH achieved more accurate
segmentation than HDP-GP-HSMM. We believe that this is
because the appropriate latent space for the segmentation was
constructed by using the predictive distribution of the GP as the
prior distribution of the VAE in HVGH.

Furthermore, the number of motion classes in the chicken
dance and teapot dance was correctly estimated by HVGH. In
the exercise motion, larger numbers were estimated because
their sequences included complicated motions. In the case of
exercise motion 1, 14 classes were estimated by HVGH—more
than the correct number seven. This is because the stationary
state was estimated as a unit of motion, and symmetrical
motion was separately classified as left-sided and right-sided
motion in different classes. Moreover, 13 classes—more than
the correct number 11—were estimated by HVGH in exercise
motion 2. Again, this is because stationary motion was estimated
as one motion and because the symmetrical motion shown in
Figure 13J was divided into two classes: left- and right-sided

TABLE 4 | Segmentation results for the exercise motion 2: subject 14.

Hamming

distance

PrecisionRecall F-

measure

# of estimated

classes

HVGH 0.23 0.50 1.0 0.66 13

VAE +

HDP-GP-HSMM

0.39 0.46 1.0 0.63 14

VAE + HDP-HMM 0.82 0.03 1.0 0.07 25

VAE +

HDP-HMM+NPYLM

0.75 0.23 0.86 0.36 42

VAE + BP-HMM 0.79 0.48 0.81 0.55 4

VAE + Autoplait 0.79 0.0 0.0 0.0 3

Random baseline (A) 0.62 0.46 0.41 0.43 9

Random baseline (B) 0.63 0.37 0.66 0.47 11

Random baseline (C) 0.66 0.51 0.19 0.28 7

motion. However, it is reasonable to estimate the stationary
state as a unit of motion. Further, dividing a symmetrical
motion into two classes was not erroneous, because the observed
values for the left- and right-sided motion were different.
Therefore, we conclude that HVGH yielded better results in
this case.

Figure 17 illustrates the segmentation results for exercise
motion 2. In this graph, the horizontal axis represents time
steps, the color reflects motion classes, and the top bar is the
ground truth of the segmentation. It is clear that the segments
and their classes estimated by HVGH are the most similar to the
ground truth.

Moreover, we compared the VAE with other dimensional
compression methods in HDP-GP-HSMM. Table 5 presents the
results of the segmentation of exercise motion 2 obtained using
the methods in which dimensional compression is performed
through principal component analysis (PCA) (Pearson, 1901)
and independent component analysis (ICA) (Hyvärinen et al.,
2000) instead of VAE. PCA and ICA are generally used for
dimensional compression. We used the general FastICA4 as the
ICA implementation, and their three-dimensional output was

TABLE 5 | Segmentation results of comparison with other compression methods.

Hamming

distance

Precision Recall F-

measure

# of estimated

classes

HVGH 0.23 0.50 1.0 0.66 13

VAE +

HDP-GP-HSMM

0.39 0.46 1.0 0.63 14

PCA +

HDP-GP-HSMM

0.49 0.44 0.77 0.56 7

ICA +

HDP-GP-HSMM

0.56 0.48 0.66 0.54 7

4https://scikit-learn.org/stable/modules/generated/sklearn.decomposition.
FastICA.html

FIGURE 17 | Segmentation results for exercise motion 2.
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A B C

FIGURE 18 | Latent space of the VAE: (A–C) respectively represent the first and second, first and third, and second and third dimension of the latent variables. The

color of each point, which is latent variable reflects the correct motion class.

A B C

FIGURE 19 | Latent space of the HVGH: (A–C) respectively represent the first and second, first and third, and second and third dimension of the latent variables. The

color of each point, which is latent variable reflects the correct motion class.

used identical to the latent variables of VAE. In the case of PCA
and ICA, the min-max normalization, in which the values are
normalized to a range from –1 to 1, was applied for the sequence
of latent variables, as with Nagano et al. (2018).

Additionally, we described the results of HVGH
and VAE+HDP-GP-HSMM for comparison. PCA and
ICA compress the high-dimensional data into low-
dimensional data by linear transform, and complicated
high-dimensional time-series data cannot be converted
into low-dimensional data appropriate for segmentation
by using these methods. On the other hand, VAE non-
linearly compresses high-dimensional data by using a neural
network and enables the conversion of the high-dimensional
time-series data into low-dimensional data appropriate
for segmentation.

With regard to exercise motion 1, Figure 18 shows the
latent variables estimated by the VAE, and Figure 19 shows
the latent variables learned by mutual learning with HVGH. In
these figures (a-c), respectively, represent the first and second,
first and third, and second and third dimensions of the latent
variables. The color of each point reflects the correct motion
class. In Figure 18, latent variables do not necessarily reflect
the motion class, because they were estimated with the VAE
exclusively. In contrast, in Figure 19, the latent variables in the
same class have more similar values. This means that latent space
is estimated to represent the features of unit motions. However,
it is difficult to fully understand the meaning of latent space
because the VAE represents a non-linear relationship between

high-dimensional output and low-dimensional latent variables.
Thus, we qualitatively analyze them by comparing the latent
variables withmotions, where each dimension roughly represents
the following motions:

• Positive region in the first dimension: right and left motions
of the arms

• Negative region in the first dimension: up and downmotions
of the arms

• Positive region in the second dimension: twisting of the
upper body to the left

• Negative region in the second dimension: twisting of the
upper body to the right

• Positive region in the third dimension:motions of the legs
• Negative region in the third dimension: bending of the

upper body

From these results, we conclude that HVGH can estimate
the correct number of classes and accurate segments
from high-dimensional data by using the proposed mutual
learning loop.

5. CONCLUSION

In this paper, we proposed HVGH, which segments high-
dimensional time-series data by mutual learning of a VAE and
HDP-GP-HSMM. In the proposed method, high-dimensional
vectors are converted into low-dimensional latent variables
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representing features of unit motions with the VAE. Using these
latent variables, HVGH achieves accurate segmentation. The
experimental results showed that the segments, their classes, and
the number of classes could be estimated correctly using the
proposed method. Moreover, the results showed that HVGH is
effective with various types of high-dimensional time-series data
compared to a model where the VAE and HDP-GP-HSMM are
used independently.

However, the computational cost of HVGH is very high
because it takes O(N3) to learn N data points using a Gaussian
process, and this is repeated in the mutual learning loop.
Because of this problem, HVGH cannot be applied to large-
scale time-series data. We plan to reduce the computational
cost by introducing the approximation method for the
Gaussian process proposed in Nguyen-Tuong et al. (2009)
and Okadome et al. (2014).

Moreover, to simplify the computation, we assumed that
the dimensions of the observation were independent, and we
consider this assumption reasonable because the experimental
results demonstrated that the proposed method works well.
However, the dimensions of the observation are not actually
independent, and the dependency between the dimensions will
need to be considered to model more complicated whole-body
motion. We believe that multi-output Gaussian processes can
be used to represent dependencies between dimensions (Álvarez
et al., 2010; Dürichen et al., 2014).

In HVGH, we do not consider the time warp of the time-
series data. Although GP can deal with motions whose speeds

are slightly different by estimating the variance, motions whose
speeds are considerably different are classified into different
classes. Therefore, we will investigate the robustness of HVGH
against time warp in a future study and extend it to a method
considering time warp.
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