How LSTM Encodes Syntax: Exploring Context Vectors and Semi-Quantization on Natural Text

<u>Chihiro Shibata (Tokyo University of Technology)</u> Kei Uchiumi (Denso IT Laboratory) Daichi Mochihashi (The Institute of Statistical Mathematics)

Introduction

- LSTMs have been used in wide range of NLP tasks:
 - Machine translation, text generation, etc.
- LSTM Language Model (LSTM-LM) is the most fundamental architecture for those applications.
 - It is not yet completely clear <u>how syntactic information is represented in it</u>.
- What is the purpose of this research?
 - Understanding internal representations of $\underline{\text{LSTM-LMs}}$ w.r.t. syntactic information.
 - <u>Empirical approach</u>: Real data (plain text) + syntactical annotation.
 - Details of representations in each internal vector inside LSTM are investigated.
 - NOT about BERT's representation.
 - nor comparison to BERT

Outline

- 1. We investigate the distributions of the elements of the internal vectors.
 - empirically show that their distributions are approximately quantized (<u>Semi-quantization</u>).
- 2. <u>Cell-state vectors (c) are investigated using several datasets</u>, some of which are Dyck-languages.
 - How the semi-quantization relates to the representation in \boldsymbol{c} .
- **3.** <u>Cell-update vectors (u) are focused and</u>
 - showed to have important role in representing syntactic information.

Semi-Quantization of Internal Vectors and Statistics of each Element of them

- Right figure: learning results of a single-layered LSTM-LM using plain texts (WSJ) are shown.
- Simple but important facts:
 - Each element is approximately quantized (because LSTM is designed so).
 - Internal vectors such as cell-state and output have characteristic distributions that have different peaks.
- Datasets and learning methods such as dropout basically are independent to the above characteristics.

We look into each distribution that the elements of each internal vector has.

COLING2020 - 4

Distribution of elements of cell-update vectors (u)

- Distributions dramatically changes through learning.
- u is semi-quantized into $\{-1,0,1\}$.
- has important rules for syntactic representation as shown later.

distribution with initial weights

Distribution of elements of forget-gate vectors (*f*)

• Distributions of elements of f are binarized into $\{0,1\}$ values.

distribution with initial weights

Distribution of elements of cell-state vectors (*c*)

- We can observe peaks in the integer values:
- result of accumulating \boldsymbol{u} vectors.

distribution with initial weights 1.0 cell(expand) 0.8 0.6 0.4 0.2 0.0 -1 -3 -2 0 after learning 1.6 cell(expand) 1.4 1.2 1.0 0.8 0.6 0.4 0.2 0.0 -2 -3

COLING2 020 - 7

Distribution of elements of output (=hidden) vectors (*h*)

- Large peak around 0.
- Small peaks at $\{-1, -0.75, +0.75, +1\}$.

-1.00 -0.75 -0.50 -0.25 0.00 0.25 0.50

0.75 1.00

8

2

Semi-quantization of internal vectors and statistics of each element of vectors

• Question:

This kind of semi-quantization

- is just a result of activation functions, and thus there is no contribution to encode syntax?
- or has a certain role for learning syntax?
- Through experiments:
 - We investigate the representation in cand its relation to <u>the nesting depths of</u> <u>the phrase structures</u>.
 - Models are learned from several types of data.

Experiments: Target-dataset to learn

- Making Dyck-like data by adding parentheses to texts in PTB-WSJ.
- Four types of data:
- **1. Paren** : '(' and ')' without words,

- **3.** Tag : (T' and (T)) without words, where T is a nonterminal symbol.(NP (DT NP) (JJ JJ) (NN NN) NP)
- 5. Words : plain text.

a nonexecutive director

(())

Learning results and accuracies

Check accuracies for <u>1 the balancing of parentheses</u> and <u>2 kinds of tags (implying orders of tags)</u>:

- ① LSTM-LM predicts EOS with 100% (almost no mistake).
- 2 It predicts kinds of phrases of ")" with >95% (slight mistake).

Dataset	BOP	EOP	EOS	Words
Paren	0.77	0.87	1.00	_
Paren+W	0.90	0.96	1.00	0.78
Tag	0.87	0.93	1.00	_
Tag+W	0.89	0.96	1.00	0.86
Words	—	_	_	0.49

End Of Sentence

Embedding of nesting depth on Paren and Paren+W data

- In cell-state vector (c):
 - Elements whose correlation coefficient is 1.0 with respect to the nesting depth.
 - Both for Paren and Paren+W.
- LSTM counts the nesting depth of the parentheses through such elements.

Visualizing of count of nesting depths by a single element of c

- For Paren data, we can observe a clear lattice for some single element.
- As the height of each step of the lattice is 1, we can know that *c*, *u*, *f* are completely quantized to natural numbers.

Embedding of nesting depth of each tag on Tag and Tag+W data

- There is a single element that has high correlation.
 - the highest correlated elements : 0.96 for NP, and 0.85 for VP.
- However, correlation is not perfect.
 - Element of c is quantized well but doesn't corresponds to the nesting depth of VP perfectly.

Representation in subspace (linear sum of elements)

• we can find a good linear sum so that the correlation coefficient can be almost 1.

Dataset	t Tag	Data	aset Tag	g+W	C
Acc #nnz	ratio	Acc	#nnz	ratio	
0.996 82	41%	0.9996	5 134	13%	3×10^{-3}
0.994 56	28%	0.9992	2 100	10%	1×10^{-3}
0.991 34	17%	0.998	71	7%	3×10^{-4}
0.98 21	11%	0.991	51	5%	1×10^{-4}
0.96 8	4%	0.97	27	2.7%	3×10^{-5}
0.91 5	2.5%	0.87	12	1.2%	1×10^{-5}

Embedding of nesting depth using plain text

• Correlation coefficient is high: 0.82 for VP using linear sum of \boldsymbol{c}

• It is not possible to obtain a complete correlation such that all plots are almost on a straight line.

Nesting depth of VPs

Summary so far and Further Question

Summary:

- For Paren data, in *c*, there is a completely quantized element that acts as a counter of the nesting depth of the parentheses.
- For Tag data, a linear sum of the elements of \boldsymbol{c} can act as a counter of the nesting depth.
- For plain text, we cannot find such a clear counter, but find a highly correlated direction in $\boldsymbol{c}.$

Question:

• For plain text, can we find any clusters that represents triggering the nesting of the phrase structure, which should be POS such as nouns and verbs?

- comparing $\boldsymbol{c}, \boldsymbol{u}, \boldsymbol{h}$:
 - c has accumulated context information.
 - \boldsymbol{u} has delta that triggers contexts.
 - h has information to predict a next word. u should represent POS most clearly.
- visualizing POS clusters:
 - Vectors for the same word are averaged.
 - Clusters of {VB, VBZ, NN, NNS, CD} are obtained most clearly in \boldsymbol{u} .

NN, NNZ, VB, VBZ : noun singular, plural, verb sin., plu. CD : numbers

list of similar words : understanding roles of internal vectors

- comparison of vector similarities between c and u.
- For *u*, syntactically similar words tend to be listed.
- For c, co-occurrence words tend to be listed.

"her"				"his"				"an"				"a"			
c	sim.	$oldsymbol{u}$	sim.	c	sim.	$oldsymbol{u}$	sim.	\boldsymbol{c}	sim.	$oldsymbol{u}$	sim.	c	sim.	$oldsymbol{u}$	sim.
his	0.70	his	0.39	the	0.74	the	0.43	a	0.71	а	0.31	the	0.76	the	0.43
mother	0.68	my	0.33	's	0.73	their	0.39	the	0.68	the	0.27	modest	0.76	another	0.36
playing	0.67	the	0.28	а	0.72	her	0.39	initial	0.68	its	0.26	's	0.75	his	0.36
mind	0.66	its	0.26	their	0.71	your	0.37	enormous	0.67	another	0.25	to	0.74	your	0.34
husband	0.65	our	0.26	,	0.71	its	0.37	opportunity	0.67	her	0.25	its	0.73	's	0.33
matters	0.65	your	0.26	her	0.70	а	0.36	planned	0.67	any	0.25	similar	0.73	every	0.33
party	0.65	their	0.25	its	0.70	's	0.36	military	0.66	his	0.22	and	0.73	its	0.33

syntactically similar
(possessive)

co-occurrence words

list of similar words : understanding roles of internal vectors

- comparison of similar words to "her" using h, c, u, and $\theta(u)$ vectors.
- In *h*, both types of words that have similar meaning or syntactic function are gathered.
- In *u*, words that have similar syntactic functions are gathered most well.
- Quantizing \boldsymbol{u} to $\{-1,0,1\}$ $(\boldsymbol{\theta}(\boldsymbol{u}))$ doesn't change the result so much.

h	c	\boldsymbol{u}	$ heta(oldsymbol{u})$
my	his	his	his
his	mother	my	my
mother	playing	the	the
husband	mind	its	its
mind	husband	our	your
wife	matters	your	their
their	party	their	's

Table 1: Most similar words with "her", based on different internal vectors in LSTM. $\theta()$ is a discretization by thresholds ± 0.9 .

How the syntactic functions of the word "that" are embedded in u ?

- Word "that" is a representative ambiguous functional word.
- Different meanings are clustered although they are not completely separated.

Conclusion

Statistics of internal vectors (c, h, u, f):

• Characteristic semi-quantization is observed for every internal vector.

Analyses of cell-state vector (\mathbf{c}) :

- For Paren data, in *c*, there is a completely quantized element that acts as a counter of the nesting depth of the parentheses.
- For Tag data, a linear sum of the elements of \boldsymbol{c} can act as a counter of the nesting depth.

Analyses of cell-update vector (\boldsymbol{u}) :

- POS is best represented in cell-update vector \boldsymbol{u} .
- Syntactic functions the word "that" has can be clustered in \boldsymbol{u} .

Related work about capability of LSTM-LMs w.r.t. capturing syntactic information

Empirical analyses :

- Synthetic data
 - Dyck-1,2 and shuffle of Dyck-1 languages (Suzugun et al. 2019)
 - SP-k languages (Enes et al. 2017)
 - Early studies for LSTMs with few dimensions (Prez-Ortiz et al., 2003; Schmidhuber, 2015)
- Real data
 - a lot of studies

e.g. using number agreement to check if it captures syntax when viewed from the prediction result.(Linzen et al. 2016)

Theoretical analyses :

• expression capabilities are investigated: relation to counter machines are found. (Weiss et al. 2018, Merrill 2019)

Thank you for your listening.

