Learning Adverbs with Spectral Mixture Kernels Tomoe Taniguchi⁺ Daichi Mochihashi⁺⁺ Ichiro Kobayashi⁺ ⁺ Ochanomizu University ++The Institute of Statistical Mathematics

1. Introduction

Background

- Technological advancements are making household robots that assist in daily tasks a reality
- Effective human-robot collaboration requires sharing and understanding experiences through language

Overview

Objective :

We focus on human actions to understand the meanings of adverbs through motion features

Dimensionality Reduction:

We use **Gaussian processes** to compress human motion data and extract frequency information

Joint Topic Model:

We propose a joint topic model which learns the relationship between human motions and adverbs to understand the meanings of adverbs related to human actions

4. HDP-Spectral Mixture LDA

Algorithm

- 1. Draw $G_0 \sim \mathrm{DP}(\gamma, H)$.
- 2. For $d = 1 \dots D$,
 - Draw $\theta_d \sim \mathrm{DP}(\alpha, G_0)$.
- 3. For $n = 1 ... N_d$,
 - Draw $z_{dn} \sim \theta_d$
 - Draw $w_{dn} \sim \phi_{z_{dn}}$.
- 4. For $m = 1 \dots M_d$,
 - Draw $y_{dm} \sim \theta_d$
 - Draw $x_{dm} \sim \mathcal{N}(\mu_{y_{dm}}, \sigma_{y_{dm}}^2)$

Figure 3 : Graphical model of HDP-SMLDA

2. Human Motion Representation

- Figure 1 : Motion data compressed by GPLVM
- Three walking trajectories processed through GPLVM visualized in the three-dimensional latent space
 Cyclicity of the representations reflects the periodicity of human movements

3. Frequency components in a motion

SM kernel enables automatic learning of a mixed kernel from data by considering a combined Gaussian distribution in the Fourier domain

• Human motion can be represented

• We use Gaussian Process Latent

[Lawrence, 2003] to describe the

as smooth trajectories

human motions

Variable Model(GPLVM)

- We employ collapsed Gibbs sampling [Griffiths and Steyvers, 2004] as the learning algorithm for estimating the topic distribution of adverbs and frequencies in the HDP-SMLDA
- We estimate the number of topics (K) from the data using the Chinese Restaurant Process
- Here, **G**₀ : base distribution **D** : The number of videos **K** : The number of topics **Q** : Dimensionality of frequencies **N** : The number of adverbs **M** : The number of frequencies **Θ**: Topic distribution **Z** : The latent variables of adverbs W: Adverbs **Φ**: Word distribution **n** : The parameter of ϕ **Y**: The latent variables of frequencies **X**: frequencies **µ** : Mean of Gaussian distribution **Σ** (= σ^2) : Variance of Gaussian distribution Sampling topics of adverbs $p(t_{dn} = \ell | \mathbf{W}, \mathbf{T}_{\backslash dn}, \mathbf{Z}, \mathbf{Y}, \alpha, \gamma, \eta)$ $\propto \begin{cases} p(t_{dn} = \ell_{used}) | \mathbf{W}, \mathbf{T}_{\backslash dn}, \mathbf{Z}, \mathbf{Y}, \alpha, \gamma, \eta) \\ p(t_{dn} = \ell_{new}) | \mathbf{W}, \mathbf{T}_{\backslash dn}, \mathbf{Z}, \mathbf{Y}, \alpha, \gamma, \eta) \end{cases}$

η is iteratively updated using the Fixed-Point Iteration method

$$\eta' = \eta \cdot \frac{\sum_{k=1}^{K} \sum_{v=1}^{V} \Psi(N_{kv} + \eta) - KV\Psi(\eta)}{V \sum_{k=1}^{K} \Psi(N_k + \eta V) - KV\Psi(\eta V)}$$

- Σ is learned as a fixed value $\sigma^q = \frac{\max(\mathbf{X}^q) \min(\mathbf{X}^q)}{6K^+}$
- μ is sampled from the gaussian distribution ($\lambda = 1/\sigma^2$) $p(\mu|\mathbf{Y}) = \mathcal{N}(\mu|m, (\beta\lambda)^{-1})$ $\beta = M + \beta_0, \ m = \frac{1}{\beta} \left(\sum_{m=1}^M x_m + \beta_0 m_0 \right)$

Sampling topics of frequencies

 $p(t_{dm} = \ell | \mathbf{W}, \mathbf{T}_{\backslash dm}, \mathbf{Z}, \mathbf{Y}, \alpha, \gamma, \eta)$ $\propto \begin{cases} p(t_{dm} = \ell_{used} | \mathbf{W}, \mathbf{T}_{\backslash dm}, \mathbf{Z}, \mathbf{Y}, \alpha, \gamma, \eta) \\ p(t_{dm} = \ell_{new} | \mathbf{W}, \mathbf{T}_{\backslash dm}, \mathbf{Z}, \mathbf{Y}, \alpha, \gamma, \eta) \end{cases}$ $\int (N_{dl} + \sum_{q=1}^{Q} M_{dl \backslash dm}^{q}) \mathcal{N}(x | \mu_{k}, \sigma_{k}^{2})$

 Human motion is cyclical
 We use Spectral Mixture kernel (SM kernel)[Wilson and Adams, 2013] to extract frequency components from human motions

We analyzed the motions depicted in Figure 1 using the Spectral Mixture kernel
The vertical and horizontal axes respectively represent the probability density and mean of the estimated four Gaussian distributions

 $\left\{ \begin{array}{l} \left(N_{dl\backslash dn} + \sum_{q=1}^{Q} M_{dl}^{q} \right) \frac{N_{kw_{dn}\backslash dn} + \eta}{N_{k\backslash dn} + \eta V} \\ \sum_{k=1}^{K} \frac{\alpha L_{k}}{L+\gamma} \frac{N_{kw_{dn}\backslash dn} + \eta}{N_{k\backslash dn} + \eta V} + \frac{\alpha \gamma}{L+\gamma} \frac{1}{V}. \end{array} \right.$ \propto \langle $p(z_{dl} = k | \mathbf{W}_{\backslash dn}, \mathbf{T}, \mathbf{Z}_{\backslash dl}, \alpha, \gamma, \beta)$ $\propto \begin{cases} p(z_{dl} = k_{used} | \mathbf{W}_{\backslash dn}, \mathbf{T}, \mathbf{Z}_{\backslash dl}, \alpha, \gamma, \beta) \\ p(z_{dl} = k_{new} | \mathbf{W}_{\backslash dn}, \mathbf{T}, \mathbf{Z}_{\backslash dl}, \alpha, \gamma, \beta) \end{cases}$ $\propto \begin{cases} L_k \cdot \frac{N_{kw_{dn}} + \eta}{N_{k \setminus dn} + \eta V} \\ 1 \end{cases}$

 $\propto \begin{cases} \sum_{k=1}^{K} \frac{\alpha L_k}{L+\gamma} \mathcal{N}(x|\mu_k, \sigma_k^2) + \\ \frac{\alpha \gamma}{L+\gamma} \mathcal{N}(x|\mu_{k_{new}}, \sigma_{k_{new}}^2), \end{cases}$ $p(z_{dl} = k | \mathbf{X}_{\backslash dm}, \mathbf{T}, \mathbf{Y}_{\backslash dl}, \alpha, \gamma, \beta)$ $\propto \begin{cases} p(z_{dl} = k_{used} | \mathbf{X}_{\backslash dm}, \mathbf{T}, \mathbf{Y}_{\backslash dl}, \alpha, \gamma, \beta) \\ p(z_{dl} = k_{new} | \mathbf{X}_{\backslash dm}, \mathbf{T}, \mathbf{Y}_{\backslash dl}, \alpha, \gamma, \beta) \end{cases}$ $\propto \left\{ \begin{array}{l} L_k \cdot \mathcal{N}(x|\mu_k, \sigma_k^2) \\ \gamma \cdot \mathcal{N}(x|\mu_{k_{new}}, \sigma_{k_{mow}}^2) \end{array} \right.$

5. Dataset			sing o	f Videos	
 100 Walks (Walk data) Walk video in 2D format on Youtube Required 3D pose information for the experiment Divided video into 100 segments at motion breaks AIST++ (Dance data) Curated dance videos with copyright-cleared music Created and maintained by AIST Annotations in COCO format for 16 joint points [Li et al. ,2021] 	Walk Dance	Videos 100 1199	Adverbs 264 1767	average adverbs 12.93 16.18	 We requested Japanese adverb annotations for each video using the crowdsourcing site Lancers We utilized the direction vectors connecting each joint as input data To account for individual differences such as arm length, we compute unit vectors
Applied four methods for 3D pose estimation		Table 1 :	Details of i	input data	

6. Experiment	I Results	Unigram LDA	A HDP-SMLDA	Generation of Adverbs f	rom frequencies
Experimental Settings	Topic 1		$(M_d = 4/10)$	Using synonyms or adverbs labeled i	in other video data, appropriate adverbs can be inferred
Input:	 Topic 2 Topic 3 Topic 4 	Walk 156 99 Dance 558 331	52 / 57 218 / 249	A Q value of 10 results in more accu	Ground truth HDP-SMLDA HDP-SMLDA
Datasets:	Topic 5 10×3 5×3 10×3	Table 3 : Perplexity of	topic models		$(M_d = 4) \qquad (M_d = 10)$ passionately powerfully rhythmically
AIST++ 1,063 videos	 Topic 8 Topic 9 Topic 10 	The learned Gaussian distri	bution means (µ) are		rhythmically intensely smoothly smoothly boldly flowing
Optimize Parameters:	²⁵ ²⁰ Topic 11 • Topic 12	scattered for each topic			flowing confidently cheerfully

7. Conclusion

- We have proposed HDP-SMLDA, which aims to comprehend the semantic nuances of sensory adverbs pertaining to human motions by learning cooccurrence relationships between motion features and adverbs.
- When compared to the other representative models, our model exhibits superior performance on classification of adverbs.