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Overview

N -gram smoothing is a crucial machinery
in speech recognition and machine translation.

But N -gram parameters are so numerous, and
there are not much data (e.g. MAD)

⇓
We can’t make an exact prediction from such data.

But..

Taking our uncertainty about the parameters into the
model, we can make a stable prediction.
(This is called a Bayesian Method.)

We get a theoretically sound smoothing formula.
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Introduction

By restricting ourselves to bigram for simplicity,

Empirical (Maximum Likelihood) estimate

p̂i|j ≡ p̂(wi|wj) =
fi|j
fj

(1)

(fi|j, fj : frequency of 〈wj →wi〉 and wj)

Probability 0 for unseen words after wj

e.g. p(an|quite) = 0 simply if “quite an”
accidentally did not appear in the training data.

Some smoothing is required.
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Existent smoothing

“Adding some” method
Adding some count to every N-gram
Interpreted as an interpolation between p̂ and
uniform probability
Laplace smoothing, Lidstone’s law, Jeffreys-Perks
law, ...

Good-Turing smoothing
uses “Bins of N-gram” (number of freq. 1 N-gram, ..)
only applicable when fi|j < θ.

shares several flaws also (next slide)
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Problem of Existent smoothing

Uniform probability to unseen words
p(well|quite) = p(epistemological|quite)?

ad hoc threshold (Good-Turing)

frequency of context is ignored.
probability 0.5 = 50/100 = 2/4?
the more frequent the context is, the more stable p̂
should be (requires less smoothing)
But this information is discarded in the ordinary
approach.
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Example of Context Frequency

{
he → 1000 times

he does → 200 times
∴ p(does|he) =

200

1000
= 0.2.

This estimate is very reliable.

{
alice → 5 times

alice wandered → 1 time
∴ p(wandered|alice) =

1

5
= 0.2

p(does|he) = p(wandered|alice)?

The latter may have been 0.3 or 0.1
⇓
Context frequency (1000 and 5) should be considered.
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Bayesian Hierarchical model

Bigrams are governed by a probability table

qi|j = p(wi|wj).

But we are not confident exactly what q is
⇓

Consider (infinite) possible q’s, and average them.

In fact,
Introducing “probability of probability table q”
and taking expectation of the prediction from each q

What governs above “probability of q” is a
hyperparameter α of the Dirichlet distribution.
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Result of Bayesian Hierarchical model

Resultant smoothing is a linear interpolation using
empirical probability p̂i|j and hyperparameter α

E[p(wi|wj)] =
fi|j + αi∑
i(fi|j + αi)

(2)

=
fj

fj + α0

· p̂i|j +
α0

fj + α0

· ᾱi (3)

where α0 =
∑

k αk and ᾱi =
αi

α0

also depends on the frequency fj of context wj

non-uniform interpolation like back-off (αi)

ᾱi = p(wi)? (unigram) → No.
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Example of Bayesian model (2)

We assume α(does) = 1.5, α(wandered) = 0.01, α0 = 10.
Then because fhe = 1000 and falice = 5,

p(does|he) =
1000

1000 + 10
· 0.2 +

10

1000 + 10
· 1.5

10
= 0.1995.

p(wandered|alice) =
5

5 + 10
· 0.2 +

10

5 + 10
· 0.01

10
= 0.0673.

Very intuitive and different from any conventional methods
that give equal probability 0.2 to both cases!
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How to derive α?

Only what remains is a hyperparameter α.

Most reasonable point estimate is the α
which maximizes the probability of observed counts
F = {fi|j} (called “evidence” in Bayesian statistics)

p(F |α) =

∫
p(F |q)p(q|α)dq

=

L∏
j=1

∫ 1

0

· · ·
∫ 1

0

L∏
i=1

q
fi|j
i · Γ(α0)∏

i Γ(αi)

L∏
i=1

qαi−1
i dq1 · · · dqL

=

L∏
j=1

[
Γ(α0)∏
i Γ(αi)

·
∏

i Γ(fi|j + αi)

Γ(fj + α0)

]
(4)
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How to derive α? (2)

p(F |α) =
L∏

j=1

[
Γ(α0)∏
i Γ(αi)

·
∏

i Γ(fi|j + αi)

Γ(fj + α0)

]
(5)

This evidence (likelihood) is convex in α, and has a
global maximum

Maximum of α can be obtained by an iterative
optimization (MacKay 1994, Minka 2003)

77 lines of MATLAB code last week
Taking a few hours to calculate (for small data).
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Minka’s Exact Method

Minka (2003) “Estimating a Dirichlet distribution”

α
(t+1)
i = α

(t)
i ·

∑
j Ψ(fi|j + αj) − Ψ(αj)∑

j Ψ(fj +
∑

k αk) − Ψ(
∑

k αk)
. (6)

where Ψ(x) =
d

dx
log Γ(x)

For bigrams, it takes about 30 minutes on P4 2GHz
(dependent on data)

MATLAB code available on request.
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MacKay’s Approximation

MacKay (1994) approximates Ψ(x) by expansion:

K(α) =

L∑
j=1

log
fj + α

α
+

1

2

L∑
j=1

fj

α(fj + α)
(7)

V (i) = number of contexts before word i

G(i), H(i) = sufficient statistics from the n-gram table

Then, (no proof is given!)

α′
i = 2V (i)/

[
K(αi)−G(i)+

√
(K(αi)−G(i))2 + 4H(i)V (i)

]
(8)

Consistent to the exact answer (while difference of
performance needs to be examined.)
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Is it perfect?

Yes, almost perfect.

But, in general history h, the formula is:

E[p(wi|h)] =
fh

fh + α0

· p̂i|h +
α0

fh + α0

· ᾱi (9)

It uses a MLE (no smoothing) for history frequency fh !

We must estimate fh recursively also by a Bayesian
method. (current work)

Due to the point estimate of hyperparameter
and the assumption of uniform hyperprior.
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Gamma function

Gamma function Γ(x) is a continuous analogue of
the factorial

Γ(x) = (x − 1)! if x is an integer

Γ(x) is defined by: Γ(x) =

∫ ∞

0

exp(−θ)θx−1dθ.
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